Kubernetes中,通过Service访问Pod快速入门

一.背景

理想状态下,我们可以认为Kubernetes Pod是健壮的。但是,理想与现实的差距往往是非常大的。很多情况下,Pod中的容器可能会因为发生故障而死掉。Deployment等Controller会通过动态创建和销毁Pod来保证应用整体的健壮性。众所周知,每个Pod都拥有自己的IP地址,当新的Controller用新的Pod替代发生故障的Pod时,我们会发现,新的IP地址可能跟故障的Pod的IP地址可能不一致。此时,客户端如何访问这个服务呢?Kubernetes中的Service应运而生。

二.实践步骤

2.1 创建Deployment:httpd。

Kubernetes Service 逻辑上代表了一组具有某些label关联的Pod,Service拥有自己的IP,这个IP是不变的。无论后端的Pod如何变化,Service都不会发生改变。创建YAML如下:

apiVersion: apps/v1beta1
kind: Deployment
metadata:
  name: httpd
spec:
  replicas: 4
  template:
    metadata:
      labels:
        run: httpd
    spec:
      containers:
      - name: httpd
        image: httpd
        ports:
        - containerPort: 80

配置命令:

[[email protected] ~]# kubectl apply -f Httpd-Deployment.yaml
deployment.apps/httpd created

稍后片刻:

[[email protected] ~]# kubectl get pod -o wide
NAME                     READY   STATUS    RESTARTS   AGE     IP             NODE     NOMINATED NODE
httpd-79c4f99955-dbbx7   1/1     Running   0          7m32s   10.244.2.35    k8s-n2   <none>
httpd-79c4f99955-djv44   1/1     Running   0          7m32s   10.244.1.101   k8s-n1   <none>
httpd-79c4f99955-npqxz   1/1     Running   0          7m32s   10.244.1.102   k8s-n1   <none>
httpd-79c4f99955-vkjk6   1/1     Running   0          7m32s   10.244.2.36    k8s-n2   <none>
[[email protected] ~]# curl 10.244.2.35
<html><body><h1>It works!</h1></body></html>
[[email protected] ~]# curl 10.244.2.36
<html><body><h1>It works!</h1></body></html>
[[email protected] ~]# curl 10.244.1.101
<html><body><h1>It works!</h1></body></html>
[[email protected] ~]# curl 10.244.1.102
<html><body><h1>It works!</h1></body></html>

2.2 创建Service:httpd-svc。

创建YAML如下:

apiVersion: v1
kind: Service
metadata:
  name: httpd-svc
spec:
  selector:
    run: httpd
  ports:
  - protocol: TCP
    port: 8080
    targetPort: 80

配置完成并观察:

[[email protected] ~]# kubectl apply -f Httpd-Service.yaml
service/httpd-svc created
[[email protected] ~]# kubectl get svc
NAME         TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
httpd-svc    ClusterIP   10.110.212.171   <none>        8080/TCP   14s
kubernetes   ClusterIP   10.96.0.1        <none>        443/TCP    11d
[[email protected] ~]# curl 10.110.212.171:8080
<html><body><h1>It works!</h1></body></html>
[[email protected] ~]# kubectl describe service httpd-svc
Name:              httpd-svc
Namespace:         default
Labels:            <none>
Annotations:       kubectl.kubernetes.io/last-applied-configuration:
                     {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"httpd-svc","namespace":"default"},"spec":{"ports":[{"port":8080,"...
Selector:          run=httpd
Type:              ClusterIP
IP:                10.110.212.171
Port:              <unset>  8080/TCP
TargetPort:        80/TCP
Endpoints:         10.244.1.101:80,10.244.1.102:80,10.244.2.35:80 + 1 more...
Session Affinity:  None
Events:            <none>

从以上内容中的Endpoints可以看出服务httpd-svc下面包含我们指定的labels的Pod,cluster-ip通过iptables成功映射到Pod IP,成功。再通过iptables-save命令看一下相关的iptables规则。

[[email protected] ~]# iptables-save |grep "10.110.212.171"
-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.110.212.171/32 -p tcp -m comment --comment "default/httpd-svc: cluster IP" -m tcp --dport 8080 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 10.110.212.171/32 -p tcp -m comment --comment "default/httpd-svc: cluster IP" -m tcp --dport 8080 -j KUBE-SVC-RL3JAE4GN7VOGDGP
[[email protected] ~]# iptables-save|grep -v ‘default/httpd-svc‘|grep ‘KUBE-SVC-RL3JAE4GN7VOGDGP‘
:KUBE-SVC-RL3JAE4GN7VOGDGP - [0:0]
-A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.25000000000 -j KUBE-SEP-R5YBMKYSG56R4KDU
-A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.33332999982 -j KUBE-SEP-7G5ANBWSVVLRNZAH
-A KUBE-SVC-RL3JAE4GN7VOGDGP -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-2PT6QZGNQHS4OL4I
-A KUBE-SVC-RL3JAE4GN7VOGDGP -j KUBE-SEP-I4PXZ6UARQLLOV4E

我们可以进一步查看相关的转发规则,此处省略。iptables将访问Service的流量转发到后端Pod,使用类似于轮询的的负载均衡策略。

2.3 通过域名访问Service。

我们的平台是通过kubeadm部署的,版本是v1.12.1,这个版本自带的dns相关组件是coredns。

[[email protected] ~]# kubectl get deployment --namespace=kube-system
NAME      DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
coredns   2         2         2            2           17d

通过创建一个临时的隔离环境来验证一下DNS是否生效。

[[email protected] ~]# kubectl run -it --rm busybox --image=busybox /bin/sh
kubectl run --generator=deployment/apps.v1beta1 is DEPRECATED and will be removed in a future version. Use kubectl create instead.
If you don‘t see a command prompt, try pressing enter.
/ # wget httpd-svc.default:8080
Connecting to httpd-svc.default:8080 (10.110.212.171:8080)
index.html           100% |*******************************************************************************************************************************|    45  0:00:00 ETA
/ # cat index.html
<html><body><h1>It works!</h1></body></html>

顺便提一下,在未来版本中,kubectl run可能不再被支持,推荐使用kubectl create替代。此处偷了个懒,后续不建议如此操作。

在以上例子中,临时的隔离环境的namespace为default,与我们新建的httpd-svc都在同一namespace内,httpd-svc.default的default可以省略。如果跨namespace访问的话,那么namespace是不能省略的。

2.4 外网访问Service。

通常情况下,我们可以通过四种方式来访问Kubeenetes的Service,分别是ClusterIP,NodePort,Loadbalance,ExternalName。在此之前的实验都是基于ClusterIP的,集群内部的Node和Pod均可通过Cluster IP来访问Service。NodePort是通过集群节点的静态端口对外提供服务。
接下来我们将以NodePort为例来进行实际演示。修改之后的Service的YAML如下:

apiVersion: v1
kind: Service
metadata:
  name: httpd-svc
spec:
  type: NodePort
  selector:
    run: httpd
  ports:
  - protocol: TCP
    nodePort: 31688
    port: 8080
    targetPort: 80

配置后观察:

[[email protected] ~]# kubectl apply -f  Httpd-Service.yaml
service/httpd-svc configured
[[email protected] ~]# kubectl get svc
NAME         TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
httpd-svc    NodePort    10.110.212.171   <none>        8080:31688/TCP   117m
kubernetes   ClusterIP   10.96.0.1        <none>        443/TCP          12d

Service httpd-svc的端口被映射到了主机的31688端口。YAML文件如果不指定nodePort的话,Kubernetes会在30000-32767范围内为Service分配一个端口。此刻我们就可以通过浏览器来访问我们的服务了。在与node网络互通的环境中,通过任意一个Node的IP:31688即可访问刚刚部署好的Service。

三.总结

  1. 这些天一直在看kubernetes相关的书籍和文档,也一直在测试环境中深度体验kubernetes带来的便捷,感触良多,综合自己的实践写下了这篇文章,以便后期温习。距离生产环境上线的时间越来越近,希望在生产环境上线之前吃透kubernetes。
  2. 学习任何新东西都必须静下心来,光看还不够,还要结合适量的实际操作。操作完成之后要反复思考,总结,沉淀,这样才能成长。
  3. Kubernetes确实是一个比较复杂的系统,概念很多,也比较复杂,在操作之前需要把基本概念理解清楚。

四.参考资料

  1. Kubernetes官方文档

原文地址:http://blog.51cto.com/3842834/2313932

时间: 2024-11-10 14:49:01

Kubernetes中,通过Service访问Pod快速入门的相关文章

k8s通过service访问pod(五)--技术流ken

service 每个 Pod 都有自己的 IP 地址.当 controller 用新 Pod 替代发生故障的 Pod 时,新 Pod 会分配到新的 IP 地址.这样就产生了一个问题: 如果一组 Pod 对外提供服务(比如 HTTP),它们的 IP 很有可能发生变化,那么客户端如何找到并访问这个服务呢? Kubernetes 给出的解决方案是 Service. 创建 Service Kubernetes Service 从逻辑上代表了一组 Pod,具体是哪些 Pod 则是由 label 来挑选.S

Java中23种设计模式--超快速入门及举例代码

在网上看了一些设计模式的文章后,感觉还是印象不太深刻,决定好好记录记录. 原文地址:http://blog.csdn.net/doymm2008/article/details/13288067 注:本文代码基本都有很多没有初始化等等问题,主要是为了减少代码量,达到一眼就能了解大概情况的目的. java的设计模式大体上分为三大类: 创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式. 结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,

Redis快速入门:安装、配置和操作

本文是有关Redis的系列技术文章之一.在之前的文章中介绍了<Redis快速入门:初识Redis>,对Redis有了一个初步的了解.今天继续为大家介绍Redis如何安装.配置和操作. 系列文章: Redis快速入门:Key-Value存储系统简介 Redis快速入门:选择Key-Value Store Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMwa

Redis快速入门:初识Redis

[IT168 专稿]在之前的文章中介绍了<Redis快速入门:选择Key-Value Store>,今天给大家介绍Redis的入门知识.Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API.从2010年3月15日起,Redis的开发工作由VMware主持. 1.数据类型 作为Key-value型数据库,Redis也提供了键(Key)和键值(Value)的映射关系.但是,除了常规的数值或字符串,Redis的键值还

从预装版VM快速入门hadoop

利用预装VM,有以下两种形式 The?Cloudera QuickStart Virtual Machine. This image runs within the free VMWare player,?VirtualBox, or KVM and has Hadoop, Hive, Pig and examples pre-loaded. Video lectures and screencasts walk you through everything. The?Hortonworks S

Kubernetes零基础快速入门!初学者必看!

起源 Kubernetes 源自于 google 内部的服务编排系统 - borg,诞生于2014年.它汲取了google 十五年生产环境的经验积累,并融合了社区优秀的idea和实践经验. 名字 Kubernetes 这个名字,起源于古希腊,是舵手的意思,所以它的 logo 即像一张渔网又像一个罗盘,谷歌选择这个名字还有一个深意:既然docker把自己比作一只鲸鱼,驮着集装箱,在大海上遨游,google 就要用Kubernetes去掌握大航海时代的话语权,去捕获和指引着这条鲸鱼按照主人设定的路线

kubernetes系列教程(三)kubernetes快速入门

写在前面 kubernetes中涉及很多概念,包含云生态社区中各类技术,学习成本比较高,k8s中通常以编写yaml文件完成资源的部署,对于较多入门的人来说是个较高的门坎,本文以命令行的形式代理大家快速入门,俯瞰kubernetes核心概念,快速入门. 1. 基础概念 1.1 集群与节点 kubernetes是一个开源的容器引擎管理平台,实现容器化应用的自动化部署,任务调度,弹性伸缩,负载均衡等功能,cluster是由master和node两种角色组成,其中master负责管理集群,master节

Kubernetes/4.Kubernetes快速入门

Kubernetes快速入门 通过本章节的学习,你可以充分了解到一个https的kubernetes集群中所需的证书及其作用,以及kubernetes语境内的api资源类型,最后我还补充了几个基础的GET命令,此时你可以登录到上一章节我们使用kubeadm创建的集群,进行一些查询操作了. 证书管理 API资源模型 API资源类型 命令补充 备注 证书管理 k8s于生产环境运行时,我强烈建议大家运行在https的安全环境下,其证书可分为以下三大类: root CA: apiserver:apise

第三章 pod:运行于kubernetes中的容器

本章内容涵盖 创建. 启动和停止 pod 使用标签组织 pod 和其他资源 使用特定标签对所有 pod 执行操作 使用命名空间将多个 pod 分到不重叠的组中 调度 pod 到指定类型的工作节点 上一章 已经大致介绍了在 Kubemetes 中创建的基本组件,包括它们的基本功 能概述. 那么接下来我们将更加详细地介绍所有类型的 Kubemetes 对象(或资源), 以便你理解在何时. 如何及为何要使用每一个对象. 其中 pod 是 Kubemetes 中最为 重要的核心概念,而其他对象仅仅是在管