PyMC:马尔科夫链蒙特卡洛采样工具

PyMC是一个实现贝叶斯统计模型和马尔科夫链蒙塔卡洛采样工具拟合算法的Python库。PyMC的灵活性及可扩展性使得它能够适用于解决各种问题。除了包含核心采样功能,PyMC还包含了统计输出、绘图、拟合优度检验和收敛性诊断等方法。

加qq群813622576或vx;tanzhouyiwean免费领取Python学习资料

特性

PyMC使得贝叶斯分析尽可能更加容易。以下是一些PyMC库的特性:

  • 用马尔科夫链蒙特卡洛算法和其他算法来拟合贝叶斯统计分析模型。
  • 包含了大范围的常用统计分布。
  • 尽可能地使用了NumPy的一些功能。
  • 包括一个高斯建模过程的模块。
  • 采样循环可以被暂停和手动调整,或者保存和重新启动。
  • 创建包括表格和图表的摘要说明。
  • 算法跟踪记录可以保存为纯文本,pickles,SQLite或MySQL数据库文档或HDF5文档。
  • 提供了一些收敛性诊断方法。
  • 可扩展性:引入自定义的步骤方法和非常规的概率分布。
  • MCMC循环可以嵌入在较大的程序中,结果可以使用Python进行分析。

安装

PyMC可以运行在Mac OS X,Linux和Windows系统中。安装一些其他预装库可以更大程度地提高PyMC的性能和功能。

预装库

PyMC的运行要求一些预装库的安装及配置。

使用EasyInstall安装

安装PyMC最简单的方式是在终端输入以下代码:

确保用户具有适合的权限进行安装。

使用预编译二进制文件进行安装

  1. PyPI下载安装器。
  2. 双击可执行安装包,按照向导进行安装。

编译源码安装

用户可以从the GitHub download page中下载源代码并解压。

从GitHub上安装

用户可以在GitHub中查找PyMC,并执行:

历史版本在/tags目录中可以找到。

执行测试套件

pymc中包含了一测试用例来确保代码中的关键组件能够正常运行。在运行这个测试之前,用户需要保证nose已经在本地安装好,在Python编译器中执行以下代码:

如果测试失败,将会显示错误的具体信息。

使用

首先,在文件中定义你的模型,并命名为mymodel.py。

保存此文件,在Python编译器或者相同目录下的其他文件中调用:

这个例子会产生10000个后验样本。这个样本会存储在Python序列化数据库中。

教程示例

教程会指导用户完成常见的PyMC应用。

如何用MCMC来拟合模型

PyMC提供了一些可以拟合概率模型的方法。最主要的拟合模型方法是MCMC,即马尔科夫蒙特卡洛算法。生成一个MCMC对象来处理我们的模型,导入disaster_model.py并将其作为MCMC的参数。

调用MCMC中的sample()方法(或者交互采样函数isample())来运行采样器:

等待几秒钟后,便可以看到采样过程执行完成,模型已经完成拟合。

加qq群813622576或vx;tanzhouyiwean免费领取Python学习资料

原文地址:https://www.cnblogs.com/zxcv1234/p/9784107.html

时间: 2024-10-06 22:15:53

PyMC:马尔科夫链蒙特卡洛采样工具的相关文章

马尔科夫链蒙特卡洛采样(MCMC)入门

1.从随机变量分布中采样 研究人员提出的概率模型对于分析方法来说往往过于复杂.越来越多的研究人员依赖数学计算的方法处理复杂的概率模型,研究者通过使用计算的方法,摆脱一些分析技术所需要的不切实际的假设.(如,正态和独立) 大多数近似方法的关键是在于从分布中采样的能力,我们需要通过采样来预测特定的模型在某些情况下的行为,并为潜在的变量(参数)找到合适的值以及将模型应用到实验数据中,大多数采样方法都是将复杂的分布中抽样的问题转化到简单子问题的采样分布中. 本章,我们解释两种采样方法:逆变换方法(the

《概率统计》基于马尔科夫链的近似采样

楔子 从这一篇开始,我们主要来介绍基于马尔科夫链的近似采样过程.具体如何采样,以及整个采样过程中的思维过程,我们随着这篇的内容讲解而逐步展开 马尔科夫链的稳态与采样的关系 马尔科夫链的平稳分布是一个意义非凡的重要特性,我们换个角度说明一下大家就能明白它的重要意义:也就是说无论我们的起始状态是位于状态 1.状态 2 还是状态 3,在状态转移矩阵 P 的作用下,经过足够大的 n 步转移之后,它处于三种状态的概率都是固定的 利用下面这幅图,我们可以把这个状态转移和到达稳态的过程表达得更加直白一些: 好

MCMC(二)马尔科夫链

MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)M-H采样和Gibbs采样(待填坑) 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和的方法,但是这个方法需要得到对应的概率分布的样本集,而想得到这样的样本集很困难.因此我们需要本篇讲到的马尔科夫链来帮忙. 1. 马尔科夫链概述 马尔科夫链定义本身比较简单,它假设某一时刻状态转移的概率只依赖于它的前一个状态.举个形象的比喻,假如每天的天气是一个状态的话,那个今天是不是晴天只

马尔科夫链与蒙特卡洛方法采样算法

马尔科夫链 http://wenku.baidu.com/link?url=26MSlOhtBMPQJz3ta2p3bM6IMdLsvvHQ2mzw8AI2GcSdZAI7Ukdf1rl4KR6VUojnuutXwU5EqHNv-V0acHQn1PlkoyYT0j7DrVRWskg_Kr7&pn=50 蒙特卡洛采样算法 http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ http://imbinwang.github.io/blog

马尔科夫链和隐马尔可夫模型(转载)

马尔可夫模型是由Andrei A. Markov于1913年提出的 ?? 设 SS是一个由有限个状态组成的集合 S={1,2,3,-,n?1,n}S={1,2,3,-,n?1,n} 随机序列 XX 在 tt时刻所处的状态为 qtqt,其中 qt∈Sqt∈S,若有: P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i)P(qt=j|qt?1=i,qt?2=k,?)=P(qt=j|qt?1=i) aij≥0∑jnaij=1aij≥0∑jnaij=1 则随机序列 XX构成一个一

Chapter 4 马尔科夫链

4.1 引言 现在要研究的是这样一种过程: 表示在时刻的值(或者状态),想对一串连续时刻的值,比如:,, ... 建立一个概率模型. 最简单的模型就是:假设都是独立的随机变量,但是通常这种假设都是没什么根据的,也缺乏研究的意义. 举例来说的话,如果用来代替某个公司,比如Google,在个交易日之后的股票价格. 那么说第天的股票价格和之前第天,第天,第乃至第天的股票价格一点关系都没有,这样是说不过去的. 但是说第天股票的收盘价格依赖于第天的收盘价格还是有点道理的. 同样还可以做出这样的合理假设:在

利用隐马尔科夫链(HMM)模型实现中文分词

1.什么是HMM? 隐马尔科夫链(HMM)是一个五元组: 隐状态集合 ; 观测状态集合: 状态概率转移矩阵: 观察状态概率矩阵: 初始状态概率分布: 2.HMM有两个假设: 齐次马尔可夫链假设:任意时刻的隐藏状态只依赖与前一时刻的隐藏状态. 观测独立性假设:任意时刻的观察状态,只依赖与当前时刻的隐藏状态. 3.HMM可以解决3类基本问题: 评估观察序列的概率. 学习模型参数.即给定观察序列,估计模型的参数,是观察序列出现的概率最大. 预测问题.即给定观察序列和模型,求最有可能出现的对应状态序列.

13张动图助你彻底看懂马尔科夫链、PCA和条件概率!

https://mp.weixin.qq.com/s/ll2EX_Vyl6HA4qX07NyJbA [ 导读 ] 马尔科夫链.主成分分析以及条件概率等概念,是计算机学生必学的知识点,然而理论的抽象性往往让学生很难深入地去体会和理解.而本文,将这些抽象的理论概念,用可视化的方式来解释,还可调节相应参数来改变结果,使这些抽象概念变得生动而立体! 计算机相关概念太难.太抽象?别怕,往下看! 人类对视觉信息的记忆要远远大于文字信息.使用图表等形式的可视化,可以让抽象.难懂的概念一目了然:在此基础之上,添

马尔科夫链及其平稳状态

马尔科夫链的定义如下 从定义中我们不难看出马氏链当前状态只与前一个状态相关.比如我们预测明天天气,只考虑今天天气状况,不考虑昨天前天的天气状况. 举个具体的例子.社会学家把人按其经济状况分为3类:下层,中层,上层,我们用1,2,3表示这三个阶层.社会学家发现决定一个人的收入阶层最重要的因素就是其父母的收入阶层.如果一个人的收入属于下层类别,则它的孩子属于下层收入的概率为0.65,属于中层收入的概率为0.28,属于上层收入的概率为0.07.从父代到子代,收入阶层转移概率如下 我们用P表示这个转移矩