【行列式】- 图解线性代数 04

本文转自公众号---遇见数学---图解数学---线性代数部分

感谢遇见数学工作组将大学课本晦涩难懂、故作高深的数学知识,用通俗易懂而又生动有趣的方法解释出来。

这次我们主要做一个回顾, 再进一步将行列式的几何意义用动画展示说明. 我们说矩阵 A 可以视为一种线性变换, 所以

上面的式子意味着求一个向量 在线性变换 A 后的位置与向量 重合. 现在看个例子,  整个空间在矩阵 A 的作用下是怎样的变化过程:

  • 原来向量(1, 0.5)在经过变换后是(2, 1.5);
  • 水平方向变成了原来的 2 倍;
  • 纵向变成了原来的 3 倍;
  • 原来的直线变换后依然还是直线, 平行的依然保持平行;
  • 原点没有改变(如果没有原点, 则为仿射空间)

并且注意红色的方块面积扩大了 6 倍, 这样的面积(或体积)增大倍率就是行列式(Determinant)的几何意义, 记作: det(A) 或者 |A|

再看另一个作用矩阵线性变换的动画:

观察看到:

  • 空间发生了倾斜, 但没有扭曲;
  • 直线依然还是直线, 平行的依然保持平行;
  • A 的第一列(1.5, -1)的落脚点为(1, 0) - 像, 第二列(-0.5, 2)的落脚点为(0, 1);
  • 单位红色小方块扩大为 2.5 倍, 也就是 det(A) = 2.5

再来看这个线性变换的例子, 注意矩阵 A 中两个列向量是成比例的 - 线性相关:

观察得到:

  • 空间被压缩成一条线;
  • 向量(1, 0.5) 在整个变换过程中完全没有发生改变(这跟特征值与特征向量有关, 我们后文书再说);
  • 面积增大倍率为 0, 也就是 det(A)=0;

这跟上一节中矩阵对角线含有 0 元素情况类似, 在这种情况下意味着不存在逆矩阵, 不过也是以后要介绍的内容了.

行列式的几何意义表示面积(体积)的增大倍率, 如在经过镜像翻转后就为负值, 上一节我们看到三维矩阵的情况, 现在看一看二维中经过镜像翻转后行列式的变化, 请注意最下变换过程中 det(A) 值从正数到负数的变化过程:

原文地址:https://www.cnblogs.com/Mjerry/p/9741127.html

时间: 2024-10-03 22:02:47

【行列式】- 图解线性代数 04的相关文章

线性代数 - 04 向量的线性关系

线性代数 - 04 向量的线性关系 一.向量的线性相关性 1.两种线性关系 2.线性关系和线性方程组 二.极大线性无关组与向量组的秩 1.极大线性无关组的概念 2.极大线性无关组的求法 3.向量组的秩 线性代数 - 04 向量的线性关系

【线性变换/矩阵及乘法】- 图解线性代数 03

本文转自公众号---遇见数学---图解数学---线性代数部分 感谢遇见数学工作组将大学课本晦涩难懂.故作高深的数学知识,用通俗易懂而又生动有趣的方法解释出来. 线性变换是线性空间中的运动, 而矩阵就是用来描述这种变换的工具. 这样说还是没有直观印象, 所以还是直接看图解的动画吧. 矩阵不仅仅只是数值的表: 其实表示了在该矩阵的作用下, 线性空间是怎样的变化, 观察下图二维平面中水平和垂直方向的伸缩: 可以看到: 垂直方向并没有发生任何变换(A 的第二列没有变化); 水平方向伸展了 2 倍; 浅红

【基底 / 线性组合 / 线性无关(相关)】- 图解线性代数 02

本文转自公众号---遇见数学---图解数学---线性代数部分 感谢遇见数学工作组将大学课本晦涩难懂.故作高深的数学知识,用通俗易懂而又生动有趣的方法解释出来. 基底 在二维线性空间中, 只要用两个特殊的向量就可以来用定位(表示)出任意向量: 空间中的任何向量都是可以通过缩放这两个向量再相加表示出来. 现在想象, 譬如向量 (3,2) 就是沿着 i 的方向拉伸 3 倍, 再沿着 j 方向 拉伸 2 倍的向量相加结果. 这样特殊的向量称之为基(Basis, 或基底), 任何二维向量都可以由这两个向量

【原创】开源Math.NET基础数学类库使用(15)C#计算矩阵行列式

               本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html 上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组以及随机数发生器的相关内容.这个月接着深入发掘Math.NET的各种功能,并对

开源Math.NET基础数学类库使用(15)C#计算矩阵行列式

原文:[原创]开源Math.NET基础数学类库使用(15)C#计算矩阵行列式                本博客所有文章分类的总目录:http://www.cnblogs.com/asxinyu/p/4288836.html 开源Math.NET基础数学类库使用总目录:http://www.cnblogs.com/asxinyu/p/4329737.html 上个月对Math.NET的基本使用进行了介绍,主要内容有矩阵,向量的相关操作,解析数据格式,数值积分,数据统计,相关函数,求解线性方程组

一道组合数行列式的计算

一道行列式计算 2018.04.10 \[ \det A=\left| \begin{matrix} 1& 1& \cdots& 1\ 1& C_{2}^{1}& \cdots& C_{n}^{1}\ 1& C_{3}^{2}& \cdots& C_{n+1}^{2}\ \vdots& \vdots& & \vdots\ 1& C_{n}^{n-1}& \cdots& C_{2n-2}^

【分享】近4000份数学学习资源免费分享给大家

一直以来喜欢收集数学类的教程资源,于是费了好大劲从万千合集站上扒拉了下来,总结归类了一下,一共有将近4000本电子书.经测试,均可免费下载,可能会弹出小广告,可不必理会之.[仅供学术学习和交流,请无用于商业用途.]另外,如有可能,还请尽量支持正版纸质书.   数学史(54)     数学史.rar 55.6 MB   数学的起源与发展.rar 4.3 MB   费马大定理—一个困惑了世间智者358年的谜.pdf 9.5 MB   通俗数学名著译丛14-无穷之旅:关于无穷大的文化史.pdf 14.

计算机电子书 2017 BiliDrive 备份

下载方式 根据你的操作系统下载不同的 BiliDrive 二进制. 执行: bilidrive download <link> 链接 文档 链接 斯坦福 cs224d 深度学习与自然语言处理讲义.epub (2.87 MB) bdrive://2771ca27aa5f0eb73bcf9591ee127c2d51270617 Matplotlib 用户指南.epub (4.67 MB) bdrive://0376e03bdbf46d1670cd8d955ccde094e226a2f8 OllyD

Python之Numpy详细教程

NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用NumPy,开