神经网络优化(二) - 正则化

---恢复内容开始---

在机器学习中,有时候我们基于一个数据集训练的模型对该模型的正确率非常高,而该模型对没有见过的数据集很难做出正确的响应;那么这个模型就存在过拟合现象。

为了缓解或避免过拟合现象,我们通常用的方法是采用正则化方法(Regularization)。

1 正则化基本理解

1.1 正则化公式的引入

正则化在损失函数中引入模型复杂度指标,利用给W加权值,弱化了训练数据的噪声(注:一般不正则化 b,仅正则化 w

1.2 loss(w)函数的两种表述方式

# 表达方式1
loss(w) = tf.contrib.l1_regularizer(regularizer)(w)
# 表达方式2
loss(w) = tf.contrib.l2_regularizer(regularizer)(w)

其对应的数学表达式为

将正则化计算好的 w 添加到 losses 中

---恢复内容结束---

原文地址:https://www.cnblogs.com/gengyi/p/9901749.html

时间: 2024-11-12 22:41:58

神经网络优化(二) - 正则化的相关文章

【零基础】神经网络优化之Adam

一.序言 Adam是神经网络优化的另一种方法,有点类似上一篇中的“动量梯度下降”,实际上是先提出了RMSprop(类似动量梯度下降的优化算法),而后结合RMSprop和动量梯度下降整出了Adam,所以这里我们先由动量梯度下降引申出RMSprop,最后再介绍Adam.不过,由于RMSprop.Adam什么的,真的太难理解了,我就只说实现不说原理了. 二.RMSprop 先回顾一下动量梯度下降中的“指数加权平均”公式: vDW1 = beta*vDW0 + (1-beta)*dw1 vDb1 = b

从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架

神经网络优化(二) - 搭建神经网络八股

为提高程序的可复用性,搭建模块化的神经网络八股 1 前向传播 前向传播就是设计.搭建从输入(参数 x ) 到输出(返回值为预测或分类结果 y )的完整网络结构,实现前向传播过程,一般将其放在 forward.py 文件中 前向传播需要定义三个函数(实际上第一个函数是框架,第二.三个函数是赋初值过程) def forward(x, regularizer): w = b = y = return y 函数功能: 定义前向传播过程,返回值为y 完成网络结构的设计,实现从输入到输出的数据通路 regu

神经网络优化(二) - 学习率

1 学习率的基本定义 学习率learning_rate:每次参数更新的幅度. 简单示例: 假设损失函数 loss = ( w + 1 )2,则梯度为 参数 w 初始化为 5 ,学习率为 0.2 ,则 运行次数 参数w值 计算 1次 5 5-0.2*(2*5+2) = 2.6 2次 2.6 2.6-0.2*(2*2.6+2) = 1.16 3次 1.16 1.16-0.2*(2*1.16+2) = 0.296 4次 0.296   2 学习率的初步应用 2.1  学习率 0.2 时 # 已知损失函

神经网络优化(二) - 滑动平均

1 滑动平均概述 滑动平均(也称为 影子值 ):记录了每一个参数一段时间内过往值的平均,增加了模型的泛化性. 滑动平均通常针对所有参数进行优化:W 和 b, 简单地理解,滑动平均像是给参数加了一个影子,参数变化,影子缓慢追随. 滑动平均的表示公式为 影子 = 衰减率 * 影子 + ( 1 - 衰减率 ) * 参数 或 滑动平均值 = 衰减率 * 滑动平均值 + ( 1 - 衰减率 )* 参数 备注 影子初值 = 参数初值 衰减率 = min{ MOVING_AVERAGE_DECAY, (1+轮

tensorflow:实战Google深度学习框架第四章02神经网络优化(学习率,避免过拟合,滑动平均模型)

1.学习率的设置既不能太小,又不能太大,解决方法:使用指数衰减法 例如: 假设我们要最小化函数 y=x2y=x2, 选择初始点 x0=5x0=5 1. 学习率为1的时候,x在5和-5之间震荡. import tensorflow as tf TRAINING_STEPS = 10 LEARNING_RATE = 1 x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x") y = tf.square(x) train_op

tensorflow(3):神经网络优化(ema,regularization)

1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运行 train_op=tf.no_op(name='train')  使它们合成一个训练节点 #定义变量一级滑动平均类 #定义一个32位浮点变量,初始值为0.0, 这个代码就是在不断更新w1参数,优化 w1,滑动平均做了一个w1的影子 w1=tf.Variable(0,dtype=tf.float32) #定义num

神经网络优化(一)

一.损失函数(loss) [前向传播的预测值y与已知答案y_的差距]: 1.优化目标:使loss达到最小值. 2.优化方法:均方误差(mse) 交叉熵(ce) 自定义 详解: 1.均方误差mse: 公式: 函数:loss_mse = tf.reduce_mean(tf.square(y_ - y)) tf.reduce_mean(x)  :表示计算所有元素的平均值. 2.交叉熵cs: 表征两个概率分布之间的距离 公式: 函数:ce = -tf.reduce_mean(y_*tf.log(tf.c

Task6.PyTorch理解更多神经网络优化方法

1.了解不同优化器 2.书写优化器代码3.Momentum4.二维优化,随机梯度下降法进行优化实现5.Ada自适应梯度调节法6.RMSProp7.Adam8.PyTorch种优化器选择 梯度下降法: 1.标准梯度下降法:GD每个样本都下降一次,参考当前位置的最陡方向迈进容易得到局部最优,且训练速度慢 2.批量下降法:BGD不再是一次输入样本调整一次,而是一批量数据后进行调整,模型参数的调整更新与全部输入样本的代价函数的和有关,即下山前掌握附近地势,选择最优方向. 3.随机梯度下降法SGD在一批数