Decidability and Partial Decidability

1. Decidability

  A predicate is decidable iff its characteristic function is computable, otherwise it is undecidable. An algorithm to compute the characteristic function of a decidable predicate is a decision procedure.

  Theorem. Problem ‘x∈Wx‘ (i.e. Φx(x) is defined) is undecidable.

  We prove that via the diagonal method: assume that x∈Wx is decidable, and then we can construct the following computable function, which is other than any computable (contradiction):

    

  Corollary 1. There is a computable function h such that both ‘x∈Dom(x)‘ and ‘x∈Ran(h)‘ are undecidable.

      e.g. h(x) = x ·1 U(x,x))

  Corollary 2. (Halting Problem) Problem ‘Φx(y) is defined‘ is undecidable (whereas partailly decidable).

  Corollary 3. Problem ‘Φx is 0‘ is undecidable. To prove it, we define f(x,y)= 0U(x,x)), which is computable. According to the s-m-n theorem, there exists a total computable function K(x) such that ΦK(x)(y) = f(x,y), and hence ΦK(x) = 0 iff x∈Wx. If Φx = 0 is decidable, then ΦK(x) = 0 is decidable and hence x∈Wx is decidable.

  Corollary 4. Problem ‘Φx = Φy‘ is undecidable.

  Corollary 5. Given any number c, the following problems are undecidable:

    (1) (Acceptance Problem) c∈Wx;  (2) (Printing Problem) c∈Ex.

    Consider the following computable function and use the s-m-n theorem:

    

  To prove a predicate about x is undecidable, we shall only to prove there exists a total computable function K(x) such that the predicate regarding K(x) is undecidable, and we construct the following computable function (g is a total computable function) to harness the s-m-n theorem:

   

  And thus we have

   

  Having noted this, we have the following theorem:

  Corollary 6. (Rice Theorem) For any non-empty proper subset of the unary function collection β, ‘Φx∈β‘ is undecidable.

2. Partial Decidability   

  A predicate is partially decidable iff its partial characteristic function is computable. An algorithm to compute the partial characteristic function of a predicate is a partial decision procedure.

  For instance, x∈Wx is partially decidable but x∉Wx is not partially decidable.

  By definition, one should note that a predicate M(x) is partially decidable iff there is a computable function g(x) such that M(x) is equivalent to x∈Dom(g).

  Theorem. Predicate M(x) is partially decidable iff there is a decidable predicate R(x,y) such that M(x) is equivalent to (∃y) R(x, y).

  Theorem. If predicate M(x,y) is partially decidable, so is predicate (∃y) M(x, y).

  Theorem. Predicate M(x) is decidable iff both M(x) and ¬M(x) are partially decidable.

    Therefore, ‘Px(y) is undefined‘ is not partially decidable, otherwise the halting problem is decidable.

  Theorem. Let f(x) be a partial function, then f is computable iff the predicate ‘f(x)?y’ is partially decidable.

References:

  1. Cutland, Nigel. Computability: an introduction to recursive function theory[M]. Cambridge: Cambridge University Press, 1980

时间: 2024-10-13 11:32:37

Decidability and Partial Decidability的相关文章

Decidability and R.E. Sets (II)

1. Listing Theorem A non-empty set is r.e. iff it is the range of a unary total computable funciton. That means the elements of a r.e. set can be effectively generated. We can also prove that a set is r.e. iff it is the range of a computable function

<知识库的构建> 6-2 决定性 Decidability

总结:这个章节随他而去吧 可决定问题:可以回答yes或no的问题 不可决定问题:不能回答yes或no的问题 例如:这个程序是否能停止 Entscheidungs problem:半决定问题 FOL是不可决定问题 原文地址:https://www.cnblogs.com/mengzizhao/p/8383401.html

c# partial 分部类和分部方法

一.partial 它是一个关键字修饰符.可以将类或结构.接口或方法的定义拆分到两个或更多个源文件中. 每个源文件包含类型或方法定义的一部分,编译应用程序时将把所有部分组合起来.修饰符不可用于委托或枚举声明中. 二.分部类 在以下几种情况下需要拆分类定义: 处理大型项目时,使一个类分布于多个独立文件中可以让多位程序员同时对该类进行处理. 使用自动生成的源时,无需重新创建源文件便可将代码添加到类中. Visual Studio 在创建 Windows 窗体.Web 服务包装器代码等时都使用此方法.

Partial least squares regression(偏最小二乘法回归)

偏最小二乘法(PLS)是近年来发展起来的一种新的多元统计分析 http://en.wikipedia.org/wiki/Partial_least_squares_regression Partial least squares regression(偏最小二乘法回归),布布扣,bubuko.com

mysqldump 备份某张表 Warning: A partial dump from a server that has GTIDs will by default include the GTIDs of all transactions,

[[email protected] ok]# mysqldump -uemove -h xx.xx.xx.xx -P9906 DBname t_name -p >2t_tname.sqlWarning: A partial dump from a server that has GTIDs will by default include the GTIDs of all transactions, even those that changed suppressed parts of the

asp.net mvc下使用Html.Partial嵌套页面(功能同等用户控件)

return View()相关简介 在asp.net mvc中返回View时使用的是ViewResult,它继承自ViewResultBase 同时它还有个兄弟PartialViewResult.一个用于返回整体,另一个返回局部(HTML) 使用相关 1.控制器书写:除最后改为 "return PartialView()" 其余无差别 2.视图书写:@Html.Partial() 具有四个重载.根据情况选用 @Html.Partial("CustomerListControl

HDU 5534 Partial Tree 完全背包

一棵树一共有2*(n-1)度,现在的任务就是将这些度分配到n个节点,使这n个节点的权值和最大. 思路:因为这是一棵树,所以每个节点的度数都是大于1的,所以事先给每个节点分配一度,答案 ans=f[1]*n 先将答案赋值 所以接下来研究的就是,将剩下的n-2个度分配 即分别看 分配度数为1到n-2的节点的有几个(因为每个节点已经有一度),然后因为每个节点都加上了权值f[1],所以这时f[2]=f[2]-f[1],以此类推, 看到这里,就是一个完全背包问题:如果还没看出来,详细一点 有1到n-2这些

C# partial 局部类型

关键字partial是一个上下文关键字,只有和 class.struct.interface 放在一起时才有关键字的含义.因此partial的引入不会影响现有代码中名称为partial的变量.局部类型的各个部分一般是分开放在几个不同的.cs文件中,但C#编译器允许我们将他们放在同一文件中. 局部类型的应用特性:在局部类型上的特性具有“累加”效应. [Attribute1, Attribute2("Hello")] partial class Class1{} [Attribute3,

2015ACM/ICPC亚洲区长春站 G hdu 5534 Partial Tree

Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 228    Accepted Submission(s): 138 Problem Description In mathematics, and more specifically in graph theory, a tree is an undirect