【洛谷P2261】[CQOI2007]余数求和

题目背景

数学题,无背景

题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1:

10 5

输出样例#1:

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9

分析

很巧妙的一道题,考试的时候可以写个程序找规律。

洛谷题解里面写的已经很好了https://www.luogu.org/wiki/show?name=%E9%A2%98%E8%A7%A3+P2261

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1; ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
int n,k;
ll ans;
int main()
{
    n=read();k=read();
    for(int i=1;i<=n;i++)
    {
        int p,q;
        p=k/i,q=k%i;
        ll j=p?k/p:n;
        if(j>n)j=n;
        ans+=q*(j-i+1)-(j-i+1)*(j-i)/2*p;
        i=j;
    }
    printf("%lld",ans);
    return 0;
}
时间: 2024-08-09 10:36:36

【洛谷P2261】[CQOI2007]余数求和的相关文章

P2261 [CQOI2007]余数求和

题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29 输入输出格式 输入格式: 两个整数n k 输出格式: 答案 输入输出样例 输入样例#1: 10 5 输出样例

Luogu P2261 [CQOI2007]余数求和

最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1min才想到CQOI到底是哪里的原来是重庆呵 其实还是一道比较好的除法分块的入门题.动一下脑子就可以做了. 我们先观察一下最基础的式子: \(\sum_{i=1}^n k\ mod\ i\) 然后我们利用取余的基本性质,即\(k\ mod\ i=k-i\lfloor\frac{k}{i}\rfloor

题解 P2261 【[CQOI2007]余数求和】

题目链接 Solution [CQOI2007]余数求和 题目大意:给定\(n,k\),求\(\sum_{i = 1}^{n}k \bmod i\) 解析:我们考虑大力化柿子 \[\sum_{i = 1}^{n}k \bmod i\] \[=\sum_{i = 1}^{n}k-i \times \lfloor \frac{k}{i} \rfloor\] \[=nk-\sum_{i = 1}^{n}i \times\lfloor \frac{k}{i} \rfloor\] 然后我们发现右边\(\s

[Luogu 2261] CQOI2007 余数求和

[Luogu 2261] CQOI2007 余数求和 <题目链接> 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \(10^{9}\) 的范围注定会卡掉暴力. 所以我们要用除法分块来优化. 由题意得:\(ans = \sum_{i=1}^{n} k \bmod i\) 我们知道,\(a \bmod b = a - b \times \lfloor \frac{a}{b} \rfloor\) 因此,\

【题解】CQOI2007余数求和

大家都说这题水然而我好像还是调了有一会儿--不过暴力真的很良心,裸的暴力竟然还有60分. 打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/2~之后为公差为1的等差数列,于是我们就可以利用高斯求和快速求解啦.自认为代码是能够看得的... #include <bits/stdc++.h> using namespace std; #define LL long long #define int long long LL ans; int

Luogu2261 [CQOI2007]余数求和

题目蓝链 Description 定义函数\(G(n, k) = \sum\limits_{i = 1}^{n} k~mod~i\),给定\(n, k\),求函数\(G\)的值 \(n, k \leq 10^9\) Solution 我一开始看这题的时候居然还懵了一下 因为当\(i > k\)时,余数一定都是\(k\),所以我们只需要考虑\(i \leq k\)的部分怎么求 我们可以把\(k\)表示成\(a \cdot i + b\)的形式,我们发现\(k\)分别整除\([1, k]\)之间的数

[CQOI2007]余数求和

[代码] #include<bits/stdc++.h> #define LL long long using namespace std; int main() { LL n, k, t, ans; #define LL long long scanf("%lld%lld", &n, &k); ans = (LL) n * k; for(LL l = 1,r; l <= n;l = r + 1) { r = (t = k / l) ? min(k /

[CQOI2007]余数求和-整除分块

题目 题目 题目大意: 给出正整数\(n,k\),求\(\Sigma_{i=1}^{n}{k \bmod i}\) 代码 乍一看只能暴力,其实稍微修改下就变成了数论分块. \(\Sigma_{i=1}^{n}{k \bmod i}=\Sigma_{i=1}^{n}{\lfloor{\frac{k}{i}}\rfloor} \times i\) 然后就比一般的整除分块只是多了一个i,套板子就行了. #include <iostream> using namespace std; typedef

高斯求和等差数列前缀和(洛谷1147 连续自然数和)

对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为M=10000的一个解. 输入格式: 包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000). 输出格式: 每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一