混合模型和EM算法

1. k-means算法

k-means算法的loss function 可写成

其中,为指示变量,代表数据n被指派到类k,为类k的均值。k-means算法的核心为找到以最小化loss function。优化方法为交替优化,先基于优化J,保持不变。同样基于优化J,不变。这两个阶段分别被称作EM算法的E(expectation) 步和M(maximization)步。

具体步骤为:

(1)数据指派到最近的聚类中心,确定,以最小化J;

(2)对J基于求导,得到,即为指派到聚类k的数据点的均值。

k-means算法也用来初始化高斯混合模型EM算法的参数,也可用来做简单的图像压缩。

2. 高斯混合模型

高斯混合分布可写成多个高斯分布的线性叠加

其中

时间: 2024-10-23 02:02:06

混合模型和EM算法的相关文章

HMM模型和Viterbi算法

一.隐含马尔可夫模型(Hidden Markov Model) 1.简介 隐含马尔可夫模型并不是俄罗斯数学家马尔可夫发明的,而是美国数学家鲍姆提出的,隐含马尔可夫模型的训练方法(鲍姆-韦尔奇算法)也是以他名字命名的.隐含马尔可夫模型一直被认为是解决大多数自然语言处理问题最为快速.有效的方法. 2.马尔可夫假设 随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,即P(St|S1,S2,S3,-,St-1) = P(St|St-1). 比如,对于天气预报,硬性假定今天的气温只与昨天有

EM算法【转】

混合高斯模型和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与K-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,

EM算法[转]

最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 主要内容: 1. 概率论预备知识 2. 单高斯模型 3. 混合高斯模型 4. EM算法 5. K-means聚类算法 一.概率论预备知识 1. 数学期望/均值.方差/标准差 设离散型随机变量X的分布律为 则称为X的数学期望或均值 设连续型随机变量X的概率密度函数(pdf)为 则其数学期望定义为: 随机变量X的方差: 随机变量X的标准差: 2. 正态分布.协方差 正态分布: 概率密度函数: 设(X,Y)为二维随机变量,若存在,则

EM算法与混合高斯模型

很早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到很好的应用.这个算法公式太多就手写了这部分主体部分. 好的参考博客:最大似然估计到EM,讲了具体例子通熟易懂. JerryLead博客很不错 混合高斯模型算法

【转载】混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示.与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取.而且我们认为在给定后,满足多值高斯分布,即.由此可以得到联合分布. 整个模型简单描述为对于每个

机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)

今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马,RUA!!!不知道看这个博客的人有没有懂这个梗的.好的,言归正传,今天要讲的EM算法,全称是Expectation maximization,期望最大化.怎么个意思呢,就是给你一堆观测样本,让你给出这个模型的参数估计.我靠,这套路我们前面讨论各种回归的时候不是已经用烂了吗?求期望,求对数期望,求导为0,得到参数估计值,这套路我懂啊,MLE!但问题在于,如果这个问题存在中间的隐变量呢?会不会把我们的套路给带崩呢

【转载】(EM算法)The EM Algorithm

(EM算法)The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f

从最大似然到EM算法浅解

原文在这里 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学