机器学习实战笔记2(k-近邻算法)

1:算法简单描述

给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签。简称kNN。通常k是不大于20的整数,这里的距离一般是欧式距离。

2:python代码实现

创建一个kNN.py文件,将核心代码放在里面了。

(1)   创建数据

#创造数据集
def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

(2)   构照kNN分类器

#第一个kNN分类器  inX-测试数据 dataSet-样本数据  labels-标签 k-邻近的k个样本
def classify0(inX,dataSet, labels, k):
    #计算距离
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1))- dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis = 1)
    distances = sqDistances **0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    #选择距离最小的k个点
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
    #排序
    sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]

代码讲解:(a)tile函数 tile(inX, i);扩展长度  tile(inX, (i,j)) ;i是扩展个数,j是扩展长度。如:

(b) python代码路径,需要导入os文件,os.getcwd()显示当前目录,os.chdir(‘’)改变目录,listdir()显示当前目录的所有文件。此外如果修改了当前.py文件,需要在python shell中重新加载该py文件(reload(kNN.py)),以确保更新的内容可以生效,否则python将继续使用上次加载的kNN模块。如:

(c)注意列表求平方,求和

如:

3:案例—约会网站

案例描述:

(1)   从文本文件中解析数据

# 将文本记录到转换numPy的解析程序
def file2matrix(filename):
    #打开文件并得到文件行数
    fr = open(filename)
    arrayOLines = fr.readlines()
    numberOfLines = len(arrayOLines)
    #创建返回的numPy矩阵
    returnMat = zeros((numberOfLines, 3))
    classLabelVector = []
    index =0
    #解析文件数据到列表
    for line in arrayOLines:
        line = line.strip()
        listFormLine = line.split('\t')
        returnMat[index,:] = listFormLine[0:3]
        classLabelVector.append(int(listFormLine[-1]))
        index += 1
    return returnMat, classLabelVector

代码讲解:(a)首先使用函数line.strip()截取掉所有的回车字符,然后使用tab字符\t将上一步得到的整行数据分割成一个元素列表

(b)int(listFormLine[-1]);python中可以使用索引值-1表示列表中的最后一列元素。此外这里我们必须明确的通知解释器,告诉它列表中存储的元素值为整型,否则python语言会将这些元素当做字符串处理。

(2)使用绘图工具matplotlib创建散点图—可以分析数据

(3)归一化数值

为了防止特征值数量的差异对预测结果的影响(比如计算距离,量值较大的特征值影响肯定很大),我们将所有的特征值都归一化到[0,1]

#归一化特征值
def autoNorm(dataSet):
    minVals = dataSet.min(0);
    maxVals = dataSet.max(0);
    ranges = maxVals - minVals;
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m,1))
    normDataSet = normDataSet/tile(ranges,(m,1))
    return normDataSet, ranges, minVals

(4)测试代码

测试代码以90%的作为训练样本,10%的作为测试数据

#测试代码
def datingClassTest():
    hoRatio = 0.10    #测试数据占的百分比
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVecs = int(m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVecs):
        classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print 'the classifier came back with: %d, the real answer is: %d' %(classifierResult, datingLabels[i])
        if(classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f " % (errorCount/float(numTestVecs))

(5)输入某人的信息,便得出对对方的喜欢程度

#输入某人的信息,便得出对对方喜欢程度的预测值
def classifyPerson():
    resultList = ['not at all', 'in small doses', 'in large doses']
    percentTats = float(raw_input("percentage of time spent playing video games?"))
    ffMiles = float(raw_input("frequent flier miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    classifierResult = classify0((inArr - minVals)/ranges, normMat, datingLabels,3)
    print 'You will probably like this person: ', resultList[classifierResult - 1]

代码讲解:python中raw_input允许用户输入文本行命令并返回用户所输入的命令

4:案例—手写识别系统

这里可以将手写字符看做由01组成的32*32个二进制文件,然后转换为1*1024的向量即为一个训练样本,每一维即为一个特征值

(1)   将一个32*32的二进制图像转换成1*1024的向量

#将一个32*32的二进制图像矩阵转换成1*1024的向量

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0, 32*i+j] = int(lineStr[j])
    return returnVect

(2)   手写识别系统测试代码

#手写识别系统测试代码
def handwritingClassTest():
    hwLabels = []
    trainingFileList = listdir('trainingDigits')   #获取目录内容
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]              #分割得到标签  从文件名解析得到分类数据
        fileStr = fileNameStr.split('.')[0]
        classStr = int(fileStr.split('_')[0])
        hwLabels.append(classStr)                 #测试样例标签
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
    testFileList = listdir('testDigits')
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print 'the classifier came back with: %d, the real answer is: %d' % (classifierResult, classStr)
        if(classifierResult != classStr): errorCount += 1.0
    print "\nthe total numbers of errors is : %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount/float(mTest))
        

注明:1:本笔记来源于书籍<机器学习实战>

2:kNN.py文件及笔记所用数据在这下载(http://download.csdn.net/detail/lu597203933/7653991).

作者:小村长  出处:http://blog.csdn.net/lu597203933 欢迎转载或分享,但请务必声明文章出处。 (新浪微博:小村长zack, 欢迎交流!)
时间: 2024-08-24 05:25:04

机器学习实战笔记2(k-近邻算法)的相关文章

机器学习实战笔记-利用K均值聚类算法对未标注数据分组

聚类是一种无监督的学习,它将相似的对象归到同一个簇中.它有点像全自动分类.聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好 簇识别给出聚类结果的含义.假定有一些数据,现在将相似数据归到一起,簇识别会告诉我们这些簇到底都是些什么.聚类与分类的最大不同在于,分类的目标事先巳知,而聚类则不一样.因为其产生的结果与分类相同,而只是类别没有预先定义,聚类有时也被称为无监督分类(unsupervised classification ). 聚类分析试图将相似对象归人同一簇,将不相似对象归到不

机器学习实战笔记一 k-近邻算法

属于离散监督,是一个简单的分类算法 工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签. k-近邻算法,主要是求输入向量和训练样本之间的距离,距离近的表示是同一类,距离远的表示不是同一类,所谓物以类聚.然后将这些排序,最后取k个最小的,判断这k个最小的中的数据是哪一类的,最后得出输入向量

机器学习实战笔记-利用AdaBoost元算法提高分类性能

做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm ) 背后的思路.元算法是对其他算法进行组合的一种方式 7.1 基于数据集多重抽样的分类器 ??我们自然可以将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemblemethod)或者元算法(meta-algorithm).使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类

机器学习实战笔记-K近邻算法1(分类动作片与爱情片)

K近邻算法采用测量不同特征值之间的距离方法进行分类 K近邻算法特点: 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. K近邻算法原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的 特征进行比较,然后算法提取样本集中特征最相似数据(最近 邻)的分类标签.一般来说,我们只选择样本数据集中前k个最

机器学习实战笔记-K近邻算法2(改进约会网站的配对效果)

案例二.:使用K-近邻算法改进约会网站的配对效果 案例分析: 海伦收集的数据集有三类特征,分别是每年获得的飞行常客里程数.玩视频游戏所耗时间百分比. 每周消费的冰淇淋公升数.我们需要将新数据的每个新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类. 流程:在约会网站上使用K

机器学习实战笔记--k近邻算法

1 #encoding:utf-8 2 from numpy import * 3 import operator 4 import matplotlib 5 import matplotlib.pyplot as plt 6 7 from os import listdir 8 9 def makePhoto(returnMat,classLabelVector): #创建散点图 10 fig = plt.figure() 11 ax = fig.add_subplot(111) #例如参数为

《机器学习实战》学习笔记一K邻近算法

 一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征(向量的每个元素)与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的的分类标签.由于样本集可以很大,我们选取前k个最相似数据,然后统计k个数据中出现频率最高的标签为新数据的标签. K邻近算法的一般流程: (1)收集数据:可以是本地数据,也可以从网页抓取. (2)准备数

机器学习之KNN(k近邻)算法

1.算法介绍k近邻算法是学习机器学习的入门算法,可实现分类与回归,属于监督学习的一种.算法的工作原理是:输入一个训练数据集,训练数据集包括特征空间的点和点的类别,可以是二分类或是多分类.预测时,输入没有类别的点,找到k个与该点距离最接近的点,使用多数表决的方法,得出最后的预测分类. 2.算法优缺点优点:没有高深的数学思想,容易理解,精度高,对异常值不敏感,无数据输入假定:缺点:计算复杂度高,空间复杂度高:理解:因为knn算法是寻找与目标点接近的点,在计算时,异常值与目标点的"距离"会较

KNN K~近邻算法笔记

K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据的分类标签.一般来说,只提取样本数据集中前K个最相似的数据.通常K不大于20,最后选择K个最相似数据中出现次数最多的分类,最为新的数据分类. 但是K~近邻算法必须保存全部的数据集,如果训练数据集很大,必须使用打量的存储空间.此外,由于必须对数据集中每个数据集计算距离值,实际使用起来会非常耗时间.