高斯滤波器是图像处理中经常用到的滤波器,其滤波核函数为:
为简单起见,这里省略了归一化因子。
由的可分离特性:
得:
其中为输入图像,为输出图像,为滤波模板半径。根据准则,通常使。
由上式可见,我们可以将二维高斯滤波分解为两次一维高斯滤波。
对于二维高斯滤波,设图像大小,高斯模板大小,处理每个像素点需要次操作,则算法复杂度。若使用一维高斯核先对图像逐行滤波,再对中间结果逐列滤波,则处理每个像素需要次操作,算法复杂度,随着滤波模板尺寸的增大,算法优势越明显。
程序:
#include "stdafx.h" #include<stdlib.h> #include<math.h> //边界处理 int Edge(int i,int x,int Max) { int k=i+x; if(k<0)k=-i; else if(k>=Max) k=Max-i-1; else k=x; return k; } //二维高斯处理灰度图像 extern "C" _declspec(dllexport) void GaussFilterGray(unsigned char *A, int nWidth, int nHeight, int Stride,double dSigma) { unsigned char *buffer=(unsigned char*)malloc(Stride*nHeight); memcpy(buffer,A,Stride*nHeight); int nWindowSize = (int)(1+2*ceil(3*dSigma)); int nCenter = (nWindowSize)/2; double* pdKernel = new double[nWindowSize*nWindowSize]; double dSum = 0.0; double scale2X = 0.5/(dSigma*dSigma); double dFilter=0.0; double ImageData=0.0; //生成二维高斯滤波核 for(int i=0; i<nWindowSize; i++) { for(int j=0; j<nWindowSize; j++) { int nDis_x = i-nCenter; int nDis_y = j-nCenter; pdKernel[j+i*nWindowSize]=exp(-(nDis_x*nDis_x+nDis_y*nDis_y)*scale2X); dSum += pdKernel[i*nWindowSize+j]; } } //归一化 for(int i=0; i<nWindowSize; i++) { for(int j=0; j<nWindowSize; j++) { pdKernel[i*nWindowSize+j] /= dSum; } } //逐像素处理 for(int inx=0,i=0; i<nHeight; i++) { for(int j=0; j<nWidth; j++,inx++) { dFilter=0; //邻域内加权平均 for(int n=0,x=-nCenter; x<=nCenter; x++) { int i_x=Edge(i,x,nHeight); for(int y=-nCenter; y<=nCenter; y++,n++) { int j_y=Edge(j,y,nWidth); int index=(i+i_x)*Stride+j+j_y;//邻域内像素在内存中的下标 ImageData=buffer[index]; dFilter+=ImageData*pdKernel[n]; } } A[inx]= max(min(255,dFilter),0); } } delete[]pdKernel; delete[]buffer; } //一维高斯处理灰度图像 extern "C" _declspec(dllexport) void GaussFilterGray1D(unsigned char *A, int nWidth, int nHeight, int Stride,double dSigma) { unsigned char *buffer=(unsigned char*)malloc(Stride*nHeight); memcpy(buffer,A,Stride*nHeight); int nWindowSize = (int)(1+2*ceil(3*dSigma)); int nCenter = (nWindowSize)/2; double* pdKernel = new double[nWindowSize]; double dSum = 0.0; double scale2X = 0.5/(dSigma*dSigma); double dFilter=0.0; double ImageData=0.0; //生成一维高斯核 for(int i=0; i<nWindowSize; i++) { int nDis_x = i-nCenter; pdKernel[i]=exp(-(nDis_x*nDis_x)*scale2X); dSum += pdKernel[i]; } //归一化 for(int i=0; i<nWindowSize; i++) { pdKernel[i] /= dSum; } //横向滤波 for(int inx=0,i=0; i<nHeight; i++) { for(int j=0; j<nWidth; j++,inx++) { dFilter=0; for(int n=0,x=-nCenter; x<=nCenter; x++,n++) { int j_x=Edge(j,x,nWidth); int index=inx+j_x; ImageData=A[index];//从原图像A中取值 dFilter+=ImageData*pdKernel[n]; } buffer[inx]= max(min(255,dFilter),0);//中间结果放在buffer中 } } //纵向滤波 for(int i=0;i<nWidth;i++) { for(int j=0;j<nHeight;j++) { dFilter=0; for(int n=0,x=-nCenter; x<=nCenter; x++,n++) { int j_x=Edge(j,x,nHeight); int index=(j+j_x)*Stride+i; ImageData=buffer[index];//从中间图像buffer中取值 dFilter+=ImageData*pdKernel[n]; } A[j*Stride+i]= max(min(255,dFilter),0); } } delete[]pdKernel; delete[]buffer; } //二维高斯处理彩色图像 extern "C" _declspec(dllexport) void GaussFilterColor(unsigned char *A, int nWidth, int nHeight, int Stride,double dSigma) { int Step=3; if(Stride==4*nWidth)Step=4;//四通道图像 unsigned char *buffer=(unsigned char*)malloc(Stride*nHeight); memcpy(buffer,A,Stride*nHeight); int nWindowSize = (int)(1+2*ceil(3*dSigma)); int nCenter = (nWindowSize)/2; double* pdKernel = new double[nWindowSize*nWindowSize]; double dSum = 0.0; double scale2X = 0.5/(dSigma*dSigma); double dFilterB=0.0; double dFilterG=0.0; double dFilterR=0.0; int index; double ImageData; //生成二维高斯滤波核 for(int i=0; i<nWindowSize; i++) { for(int j=0; j<nWindowSize; j++) { int nDis_x = i-nCenter; int nDis_y = j-nCenter; pdKernel[j+i*nWindowSize]=exp(-(nDis_x*nDis_x+nDis_y*nDis_y)*scale2X); dSum += pdKernel[i*nWindowSize+j]; } } //归一化 for(int i=0; i<nWindowSize; i++) { for(int j=0; j<nWindowSize; j++) { pdKernel[i*nWindowSize+j] /= dSum; } } for(int i=0; i<nHeight; i++) { for(int j=0; j<nWidth;j++) { dFilterB=0; dFilterG=0; dFilterR=0; for(int n=0,x=-nCenter; x<=nCenter; x++) { int i_x=Edge(i,x,nHeight); for(int y=-nCenter; y<=nCenter; y++,n++) { int j_y=Edge(j,y,nWidth); index=(i+i_x)*Stride+(j+j_y)*Step; //三通道BGR,四通道BGRA ImageData=buffer[index]; dFilterB+=ImageData * pdKernel[n]; index+=1; ImageData=buffer[index]; dFilterG+=ImageData * pdKernel[n]; index+=1; ImageData=buffer[index]; dFilterR+=ImageData * pdKernel[n]; } } index=i*Stride+j*Step; A[index]=max(min(dFilterB,255),0); A[index+1]=max(min(dFilterG,255),0); A[index+2]=max(min(dFilterR,255),0); } } delete[]pdKernel; delete[]buffer; } //一维高斯处理彩色图像 extern "C" _declspec(dllexport) void GaussFilterColor1D(unsigned char *A, int nWidth, int nHeight, int Stride,double dSigma) { int Step=3; if(Stride==4*nWidth)Step=4;//四通道图像 unsigned char *buffer=(unsigned char*)malloc(Stride*nHeight); memcpy(buffer,A,Stride*nHeight); int nWindowSize = (int)(1+2*ceil(3*dSigma)); int nCenter = (nWindowSize)/2; double* pdKernel = new double[nWindowSize]; double scale2X = 0.5/(dSigma*dSigma); double dSum = 0.0; double dFilterB=0; double dFilterG=0; double dFilterR=0; double ImageData; int index; //一维高斯核 for(int i=0; i<nWindowSize; i++) { int nDis_x = i-nCenter; pdKernel[i]=exp(-(nDis_x*nDis_x)*scale2X); dSum += pdKernel[i]; } //归一化 for(int i=0; i<nWindowSize; i++) { pdKernel[i] /= dSum; } //横向滤波 for(int i=0; i<nHeight; i++) { for(int j=0; j<nWidth;j++) { dFilterB=0; dFilterG=0; dFilterR=0; for(int n=0,x=-nCenter; x<=nCenter; x++,n++) { int j_x=Edge(j,x,nWidth); index=i*Stride+(j+j_x)*Step; ImageData=A[index];//从原图像A中取值 dFilterB+=ImageData * pdKernel[n]; index+=1; ImageData=A[index]; dFilterG+=ImageData * pdKernel[n]; index+=1; ImageData=A[index]; dFilterR+=ImageData * pdKernel[n]; } index=i*Stride+j*Step; buffer[index]=max(min(dFilterB,255),0);//中间结果放在buffer中 buffer[index+1]=max(min(dFilterG,255),0); buffer[index+2]=max(min(dFilterR,255),0); } } //纵向滤波 for(int i=0;i<nWidth;i++) { for(int j=0;j<nHeight;j++) { dFilterB=0; dFilterG=0; dFilterR=0; for(int n=0,x=-nCenter; x<=nCenter; x++,n++) { int j_x=Edge(j,x,nHeight); int index=(j+j_x)*Stride+i*Step; ImageData=buffer[index];//从中间图像buffer中取值 dFilterB+=ImageData * pdKernel[n]; index+=1; ImageData=buffer[index]; dFilterG+=ImageData * pdKernel[n]; index+=1; ImageData=buffer[index]; dFilterR+=ImageData * pdKernel[n]; } index=j*Stride+i*Step; A[index]=max(min(dFilterB,255),0); A[index+1]=max(min(dFilterG,255),0); A[index+2]=max(min(dFilterR,255),0); } } delete[]pdKernel; delete[]buffer; }
演示结果:
上面对一幅512*512的彩色图像,基本的高斯算法耗时1469ms,而快速高斯耗时439ms。选取的,此时的滤波模板大小为。
完整的工程项目下载:快速高斯滤波
参考:
http://blog.csdn.net/markl22222/article/details/10313565
http://m.blog.csdn.net/blog/zxpddfg/45912561
时间: 2024-11-05 05:07:03