Linux 网卡驱动学习之(八)(基于 MAC 地址转发数据)

1、构建MAC地址表

交换机技术在转发数据前必须知道它的每一个端口所连接的主机的MAC地址,构建出一个MAC地址表。当交换机从某个端口收到数据帧后,读取数据帧中封装的目的地MAC地址信息,然后查阅事先构建的MAC地址表,找出和目的地地址相对应的端口,从该端口把数据转发出去,其他端口则不受影响,这样避免了与其它端口上的数据发生碰撞。因此构建MAC地址表是交换机的首要工作。下面举例说明交换机建立地址表的过程。

【分析】假设主机A向主机C发送一个数据帧(每一个数据帧中都包含有源MAC地址和目的MAC地址),当该数据帧从E0端口进入交换机后,交换机通过检查数据帧中的源MAC地址字段,将该字段的值(主机A的MAC地址)放入MAC地址表中,并把它与E0端口对应起来,表示E0端口所连接的主机是A(如图11-5所示)。此时,由于在MAC地址表中没有关于目的地MAC地址(主机C的MAC地址)的条目。交换机技术将此帧向除了E0端口以外的所有端口转发,从而保证主机C能收到该帧(这种操作叫flooding)。

2、交换机根据地址表转发数据

同理,当交换机收到主机B、C、D的数据后也会把他们的地址学习到,写入地址表中,并将相应的端口和MAC地址对应起来。最终会把所有的主机地址都学习到,构建出完整的地址表。此时,若主机A再向主机C发送一个数据帧,应用交换机技术则根据它的MAC地址表中的地址对应关系,将此数据帧仅从它的E2端口转发出去。从而仅使主机C接收到主机A发送给它的数据帧,不再影响其他端口。那么在主机A和主机C通信的同时其他主机(比如主机B和主机D)之间也可以通信。

当交换机建立起完整的MAC地址表之后,对数据帧的转发是通过查找MAC地址表得到对应的端口,从而将数据帧通过特定的端口发送出去的。但是,对于从一个端口进入的广播数据及在地址表中找不到地址条目的数据,交换机会把该数据帧从除了进入端口之外的所有端口转发出去。从这个角度来说,交换机互连的设备处于同一个广播域内,但它们处于不同的碰撞域内。

这里为了解释交换机如何建立MAC地址表,假设A向C发了一个数据帧。实际情况并非如此,并不是主机间必须进行通信交换机才能学习到MAC地址。实际上是当网卡驱动加载之后交换机就学习到了主机的MAC地址。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-03 14:18:53

Linux 网卡驱动学习之(八)(基于 MAC 地址转发数据)的相关文章

Linux网卡驱动中对于组播MAC地址的获取

对于2.6的内核,net_device内部存在一个结构体指针, struct dev_mc_list *dev->mc_list通过对它的访问,可以循环获取所有的组播MAC地址. 但是,在新的内核中(至少在3.10中)发生了变化,取而代之的是 struct netdev_hw_addr_list mc; 我们可以通过直接对mc进行访问来获取相应的数据,也可以利用Linux内核提供的宏. netdev_mc_count(dev)这个宏可以获取当前一共存在多少个组播MAC地址,具体的宏定义见下: #

Linux 网卡驱动学习(七)(MAC 与 IP)

IP 地址是服务商给你的,MAC地址是你的网卡物理地址. 1.MAC 地址 在OSI(Open System Interconnection,开放系统互连)7层网络协议(物理层,数据链路层,网络层,传输层,会话层,表示层,应用层)参考模型中,第二层为数据链路层(Data Link).它包含两个子层,上一层是逻辑链路控制(LLC:Logical Link Control),下一层即是我们前面所提到的MAC(Media Access Control)层,即介质访问控制层.所谓介质(Media),是指

Linux 网卡驱动学习(net_device 等数据结构)

[摘要]前文对网络驱动例子进行一个简单的梳理总结,本文贴出 net_device 的数据结构以及一些驱动中常用的数据结构. 1.网络设备驱动结构 下图摘自http://blog.chinaunix.net/uid-20672257-id-3147768.html 1).网络协议接口层向网络层协议提供提供统一的数据包收发接口,不论上层协议为ARP还是IP,都通过dev_queue_xmit()函数发送数据,并通过netif_rx()函数接受数据.这一层的存在使得上层协议独立于具体的设备. 2).网

linux内核驱动学习(八)----驱动分类 | 学习方法 | 硬件访问

驱动分类: 对于驱动,我们一般按两种方法进行分类:常规分类法和总线分类法. 按照常规分类法,可以分为以下三类: 1.字符设备: 以字节为最小访问单位的设备.一般通过字符设备文件来访问字符设备驱动程序.字符驱动程序则负责驱动字符设备, ,这样的驱动通常支持open.close.read.write系统调用,应用程序可以通过设备文件(比如/dev/ttySAC0等)来访问字符设备(串口).例如:串口\led\按键 2.块设备: 以块(一般512字节)为最 小传输单位的设备.大多数UNIX系统中,块设

Linux 网卡驱动学习(缓存描述符 Buffer Description)

[摘要]上文我们罗列出驱动中重要的数据结构,Linux 内核中对网络设备进行描述的核心结构类型叫做 net_device,net_device 结构定义在 include/linux/netdevice.h 文件中.该结构的字段可以分为以下几类. 1.net_device 结构分类 (1)全局信息 该类中包含了设备名(name 字段).设备状态(state 字段).设备初始化函数(init 字段)等. (2)硬件信息 该类中包含了设备内存使用情况(mem_end 和 mem_start 字段).

Linux 网卡驱动学习(二)(网络驱动接口小结)

[摘要]前文我们分析了一个虚拟硬件的网络驱动样例.从中我们看到了网络设备的一些接口.事实上网络设备驱动和块设备驱动的功能比較相似,都是发送和接收数据包(数据请求). 当然它们实际是有非常多不同的. 1.引言 首先块设备在/dev文件夹下有设备节点.而网络设备没有这种设备入口. read,write等常规的文件接口在网络设备下也没有意义. 最大的差别在于:块设备仅仅响应内核的数据请求:而网络设备驱动要异步地接收来自外部的数据包.简单地说.块设备驱动是被要求数据传输而网络设备是主动请求数据传输.网络

Linux 网卡驱动学习(六)(应用层、tcp 层、ip 层、设备层和驱动层作用解析)

本文将介绍网络连接建立的过程.收发包流程,以及当中应用层.tcp层.ip层.设备层和驱动层各层发挥的作用. 1.应用层 对于使用socket进行网络连接的server端程序.我们会先调用socket函数创建一个套接字: fd = socket(AF_INET, SOCK_STREAM, 0); 以上指定了连接协议,socket调用返回一个文件句柄,与socket文件相应的inode不在磁盘上,而是存在于内存. 之后我们指定监听的port.同意与哪些ip建立连接,并调用bind完毕port绑定:

Linux 网卡驱动学习(分析一个虚拟硬件的网络驱动例子)

在Linux,网络分为两个层,分别是网络堆栈协议支持层,以及接收和发送网络协议的设备驱动程序层.网络堆栈是硬件中独立出来的部分,主要用来支持TCP/IP等多种协议,网络设备驱动层是连接网络堆栈协议层和网络硬件的中间层. 网络设备驱动程序的主要功能是: (1)模块加载或内核启动相关的初始化处理 (2)清除模块时的处理 (3)网络设备的检索和探测 (4)网络设备的初始化和注册 (5)打开或关闭网络设备 (6)发送网络数据 (7)接收网络数据 (8)中断处理(在发送完数据时,硬件向内核产生一个中断,告

Linux 网卡驱动学习(一)(分析一个虚拟硬件的网络驱动样例)

在Linux,网络分为两个层,各自是网络堆栈协议支持层,以及接收和发送网络协议的设备驱动程序层. 网络堆栈是硬件中独立出来的部分.主要用来支持TCP/IP等多种协议,网络设备驱动层是连接网络堆栈协议层和网络硬件的中间层. 网络设备驱动程序的主要功能是: (1)模块载入或内核启动相关的初始化处理 (2)清除模块时的处理 (3)网络设备的检索和探測 (4)网络设备的初始化和注冊 (5)打开或关闭网络设备 (6)发送网络数据 (7)接收网络数据 (8)中断处理(在发送完数据时.硬件向内核产生一个中断.