动态规划算法--01背包问题

基本思想:

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式

应用场景:

适用动态规划的问题必须满足最优化原理、无后效性和重叠性。
1、最优化原理(最优子结构性质)
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

2、无后效性
 
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。

3、子问题的重叠性  动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。

下面是一个关于 0-1背包问题 的动态规划思想PPT截图:

问题描述:
  给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈
(0,1),此问题称为0-1背包问题。

  数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6},
(第0位,置为0,不参与计算,只是便于与后面的下标进行统一,无特别用处,也可不这么处理。)总重量c=10。背包的最大容量为10,那么在设置数组m大小时,可以设行列值为6和11,那么,对于m(i,j)就表示可选物品为i…n,背包容量为j(总重量)时背包中所放物品的最大价值。

最优值分析过程如下:

  当背包为空时,首先分析将物品n放入背包,即在总重量分别为0到10时,如何放置物品n使总价值最大。

  对于m[5][j],当j<w[5]时,物品5不能放入背包中,此时背包的价值为0。当j>=w[5]时,物品5可以放入背包,此时背包的价值为v[5]。得到结果如下表:

  在物品5的基础上分析物品4,

  当j<w[4]时,物品4不能放入,此时背包的最大价值为m[4+1][j];即m[4][0..4]=m[5][0..4]

  当j>=w[4]时,物品4要么放入要么不放入。当物品4放入背包后,对于物品4+1到n,能达到的最大价值为m[4+1][j-w[4]]+v[4],故此时能达到的最大价值为m[4+1][j-w[4]]+v[4]

  当物品4不放入背包时,能达到的最大价值为m[4+1][j]。最后比较放入与不放入情况下,两者的最大值取其大者,分析结果如下:

  由前面分析过程得m[i][j]的递归过程如下:

                                                      

  最终得到如下结果:

  

构造最优解

  最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。从i=1,j=c即m[1][c]开始。  

  1、对于m[i][j],如果m[i][j]==m[i+1][j],则物品i没有装入背包,否则物品i装入背包;

    2、为了确定后继即物品i+1,应该寻找新的j值作为参照。如果物品i已放入背包,则j=j-w[i];如果物品i未放入背包,则j=j。

  3、重复上述两步判断后续物品i到物品n-1是否放入背包。

  4、对于物品n,直接通过m[n][j]是否为0来判断物品n是否放入背包。

  参考:五种常用算法之三:动态规划

  

#include<iostream>
#include<stack>
#include<vector>

using namespace std;

stack<int> KnapSack(int c,vector<int> w,vector<int> v,int &max_m)
{
    vector<vector <int> > m(w.size(),vector<int>(c+1));
    stack<int> res;
    int i,j;

    max_m=0;
    for(j=0;j<c+1;j++) //对于m[n][j],
        if(j<w[w.size()-1])
            m[w.size()-1][j]=0;  //当j<w[n]时,物品n不能放入背包中,此时背包的价值为0。
        else
            m[w.size()-1][j]=v[v.size()-1];  //当j>=w[n]时,物品n可以放入背包,此时背包的价值为v[n]

    for(i=w.size()-2;i>=0;i--) //对于m[i][j],
    {
        for(j=0;j<c+1;j++)
            if(j<w[i])          //当j<w[i]时,物品i不能放入背包中,此时背包的价值为m[i+1][j]。
                m[i][j]=m[i+1][j];
            else                //当j>=w[i]时,物品n可以放入背包
            {
                int m1=m[i+1][j];  //当物品i不放入背包时,能达到的最大价值为m[i+1][j]
                int m2=m[i+1][j-w[i]]+v[i];  //当物品i放入背包后,对于物品i+1到n,能达到的最大价值为m[i+1][j-w[i]]+v[i]
                m[i][j]=m1>m2?m1:m2;         //两者取其大者
            }
    }
/*    cout << "最优值矩阵:"<<endl;
    for(i=0;i<w.size();i++)
    {
        for(j=0;j<c+1;j++)
            cout<<m[i][j]<<" ";
        cout <<endl;
    }
    cout <<endl;
    */
    j=c;
    for(i=0;i<w.size()-1;i++)
    {
        if(m[i][j]!=m[i+1][j])
        {
            res.push(i+1);
            max_m+=v[i];
            j=j-w[i];
        }
    }
    if(m[w.size()-1][j]!=0)
    {
        res.push(w.size());
        max_m+=v[w.size()-1];
    }    

    return res;
}

int main()
{
    vector<int> weight;
    vector<int> value;
    stack<int>  result;
    int max_weight;
    int tmp;
    int result_m=0;

    cout<< "输入背包最大容量"<<endl;
    cin >> max_weight;
    cout <<"输入物品重量,以0结束"<<endl;

    while(1)
    {
        cin>>tmp;
        if(tmp!=0)
            weight.push_back(tmp);
        else
            break;
    }
    cout <<"物品重量: "<<endl;
    for(int i=0;i<weight.size();i++)
        cout <<weight[i]<<" ";
    cout << endl;
    cout <<"输入物品权重,以0结束"<<endl;
    while(1)
    {
        cin>>tmp;
        if(tmp!=0)
            value.push_back(tmp);
        else
            break;
    }

    cout <<"物品权重: "<<endl;
    for(int i=0;i<value.size();i++)
        cout <<value[i]<<" ";
    cout << endl;

    result=KnapSack(max_weight,weight,value,result_m);

    cout <<"放入背包的物品为:"<<endl;
    while(!result.empty())
    {
        cout <<result.top()<<" ";
        result.pop();
    }
    cout <<endl;
    cout<<"背包最大价值为:"<<result_m<<endl;

    return 0;
}

时间: 2024-10-11 05:27:27

动态规划算法--01背包问题的相关文章

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻. 01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ),  f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值. Pi表示第i件物品的价值. 决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ? 题目描述: 有编号分别为a,b

动态规划专题 01背包问题详解【转】

对于动态规划,每个刚接触的人都需要一段时间来理解,特别是第一次接触的时候总是想不通为什么这种方法可行,这篇文章就是为了帮助大家理解动态规划,并通过讲解基本的01背包问题来引导读者如何去思考动态规划.本文力求通俗易懂,无异性,不让读者感到迷惑,引导读者去思考,所以如果你在阅读中发现有不通顺的地方,让你产生错误理解的地方,让你难得读懂的地方,请跟贴指出,谢谢! 初识动态规划 经典的01背包问题是这样的: 有一个包和n个物品,包的容量为m,每个物品都有各自的体积和价值,问当从这n个物品中选择多个物品放

动态规划之01背包问题(含代码C)

1.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.我们可以用一个表来记录所有已解的子问题的答案.不管该子问题以

【动态规划】01背包问题_两种解法

问题描述 0-1背包问题:给定\(n\)种物品和一背包.物品i的重量是\(w_i\),其价值为\(v_i\),背包的容量为\(C\).问:应该如何选择装入背包的物品,使得装人背包中物品的总价值最大? 在选择装人背包的物品时,对每种物品\(i\)只有两种选择,即装人背包或不装入背包.不能将物品\(i\)装入背包多次,也不能只装入部分的物品\(i\).因此,该问题称为0-1背包问题. 此问题的形式化描述是,给定\(C>0\),\(w_i>0\),\(v_i>0\),\(1≤i≤n\),要求找

动态规划之01背包问题

01背包问题 问题描述: 给定 n 件物品,物品的重量为 w[i],物品的价值为 c[i].现挑选物品放入背包中,假定背包能承受的最大重量为 V,问应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 针对这个问题,本人理解了多次,也了看各种题解,尝试各种办法总还觉得抽象:或者说,看了多次以后,只是把题解的状态转移方程记住了而已,并没有真正的“掌握”其背后的逻辑.直到我看了这篇文章,在此感谢作者并记录于此. 01背包问题之另一种风格的描述: 假设你是一个小偷,背着一个可装下4磅东西的背

动态规划之 0-1背包问题及改进

有N件物品和一个容量为V的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大.在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题. 形式化描述为:给定n个物品,背包容量C >0,重量 第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,Xn,), Xi∈{0,1}, 使得 ∑(w[i] * Xi) ≤C

动态规划入门-01背包问题 - poj3624

2017-08-12 18:50:13 writer:pprp 对于最基础的动态规划01背包问题,都花了我好长时间去理解: poj3624是一个最基本的01背包问题: 题意:给你N个物品,给你一个容量为M的背包 给你每个物品的重量,Wi 给你每个物品的价值,Di 求解在该容量下的物品最高价值? 分析: 状态: dp[i][j] = a 剩下i件 当前容量为j的情况下的最大价值为a 如果用 i 来枚举物品编号, 用 j 来枚举重量,那么 if ( j is from 1 to weight[i]

动态规划求解0-1背包问题

0-1背包问题是: 一个背包能承受的最大容量为max_weight,  现在有n个物品, 它们的重量分别是{w1,w2,w3,......wn}, 和价值分别是{v1,v2,......vn}, 现在要求在满足背包装载的物品不超过最大容量的前提下,保证装载的物品的价值最大? 动态规划求解过程可以这样理解: 对于前i件物品,背包剩余容量为j时,所取得的最大价值(此时称为状态3)只依赖于两个状态. 状态1:前i-1件物品,背包剩余容量为j.在该状态下,只要不选第i个物品,就可以转换到状态3. 状态2

动态规划专题 01背包问题详解 HDU 2546 饭卡

我以此题为例,详细分析01背包问题,希望该题能够为初学者对01背包问题的理解有所帮助,有什么问题可以向我提供,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14246    Accepted Submission(s): 4952 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即