POJ2391 Ombrophobic Bovines(网络流)(拆点)

Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18205   Accepted: 3960

Description

FJ‘s cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze.
A set of P (1 <= P <= 1500) paths connects them. The paths are
wide, so that any number of cows can traverse a path in either
direction.

Some of the farm‘s fields have rain shelters under which the cows
can shield themselves. These shelters are of limited size, so a single
shelter might not be able to hold all the cows. Fields are small
compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field.
The first integer (range: 0..1000) is the number of cows in that field.
The second integer (range: 0..1000) is the number of cows the shelter
in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a
path. The first and second integers (both range 1..F) tell the fields
connected by the path. The third integer (range: 1..1,000,000,000) is
how long any cow takes to traverse it.

Output

*
Line 1: The minimum amount of time required for all cows to get under a
shelter, presuming they plan their routes optimally. If it not possible
for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter
in that field, four cows from field 1 can get under the shelter in field
2, and one cow can get to field 3 and join the cows from that field
under the shelter in field 3. Although there are other plans that will
get all the cows under a shelter, none will do it in fewer than 110 time
units.

【分析】这个题跟POJ2112很像,不过2112求的是最小的单条路,而这个题求的是最小的路径长度,所以要拆点,剩下的就是网络流了。一开始一直WA,后来把cost的初始化和Floyd改了一下就过了,感觉两种写法没什么区别啊,求大神指教。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=505;
const int M=300005;
int power(int a,int b,int c){int ans=1;while(b){if(b%2==1){ans=(ans*a)%c;b--;}b/=2;a=a*a%c;}return ans;}
struct man
{
    int c,f;
}w[N][N];
int dis[N],n,m;
int t,cnt,maxn=0,ans;
ll cost[N][N];
int c[N],f[N];
bool bfs()
{
    queue<int>q;
    memset(dis,0,sizeof(dis));
    q.push(0);
    dis[0]=1;
    while(!q.empty() && !dis[t]){
        int v=q.front();q.pop();
        for(int i=1;i<=t;i++){
                //if(i==t)printf("w[i][t].c=%d\n",w[i][t].c);
            if(!dis[i]&&w[v][i].c>w[v][i].f){
                q.push(i);
                dis[i]=dis[v]+1;
            }
        }
    }
    return dis[t]!=0;
}
int dfs(int cur,int cp)
{
    if(cur==t||cp==0)return cp;
    int tmp=cp,tt;
    for(int i=1;i<=t;i++){
        if(dis[i]==dis[cur]+1 &&w[cur][i].c>w[cur][i].f){
            tt=dfs(i,min(w[cur][i].c-w[cur][i].f,tmp));
            w[cur][i].f+=tt;
            w[i][cur].f-=tt;
            tmp-=tt;
        }
    }
    return cp-tmp;
}
void dinic()
{
    ans=0;
    while(bfs())ans+=dfs(0,inf);
}
void Floyd()
{
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(i!=j)cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
                else cost[i][j]=0;
            }
        }
    }
}
void Build(ll x)
{
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)w[0][i].c=c[i];
    for(int i=n+1;i<=2*n;i++)w[i][t].c=f[i-n];
    for(int i=1;i<=n;i++)for(int j=n+1;j<t;j++)if(cost[i][j-n]<=x)w[i][j].c=inf;
}
int main(){
    cin>>n>>m;
    memset(cost,inf,sizeof(cost));
    ll l=0,r=1;
    t=n*2+1;
    for(int i=1;i<=n;i++){cin>>c[i]>>f[i];maxn+=c[i];}
    int a,b;ll val;
    while(m--){
        cin>>a>>b>>val;
        r+=val;
        cost[a][b]=cost[b][a]=min(cost[a][b],val);
    }
    Floyd();
    bool flag=false;
    while(l<r){
        ll mid=(l+r)/2;
        Build(mid);
        dinic();
        if(ans>=maxn)r=mid,flag=true;
        else l=mid+1;
    }
    if(flag) cout<<r<<endl;
    else puts("-1");
    return 0;
}

AC代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=505;
const int M=300005;
int power(int a,int b,int c){int ans=1;while(b){if(b%2==1){ans=(ans*a)%c;b--;}b/=2;a=a*a%c;}return ans;}
struct man
{
    int c,f;
}w[N][N];
int dis[N],n,m;
int t,cnt,maxn=0,ans;
ll cost[N][N];
int c[N],f[N];
bool bfs()
{
    queue<int>q;
    memset(dis,0,sizeof(dis));
    q.push(0);
    dis[0]=1;
    while(!q.empty() && !dis[t]){
        int v=q.front();q.pop();
        for(int i=1;i<=t;i++){
                //if(i==t)printf("w[i][t].c=%d\n",w[i][t].c);
            if(!dis[i]&&w[v][i].c>w[v][i].f){
                q.push(i);
                dis[i]=dis[v]+1;
            }
        }
    }
    return dis[t]!=0;
}
int dfs(int cur,int cp)
{
    if(cur==t||cp==0)return cp;
    int tmp=cp,tt;
    for(int i=1;i<=t;i++){
        if(dis[i]==dis[cur]+1 &&w[cur][i].c>w[cur][i].f){
            tt=dfs(i,min(w[cur][i].c-w[cur][i].f,tmp));
            w[cur][i].f+=tt;
            w[i][cur].f-=tt;
            tmp-=tt;
        }
    }
    return cp-tmp;
}
void dinic()
{
    ans=0;
    while(bfs())ans+=dfs(0,inf);
}
void Floyd()
{
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            if(cost[i][k]!=inf){
                for(int j=1;j<=n;j++){
                    cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
                }
            }
        }
    }
}
void Build(ll x)
{
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)w[0][i].c=c[i];
    for(int i=n+1;i<=2*n;i++)w[i][t].c=f[i-n];
    for(int i=1;i<=n;i++)for(int j=n+1;j<t;j++)if(cost[i][j-n]<=x)w[i][j].c=inf;
}
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(i==j)cost[i][j]=0;
            else cost[i][j]=inf;
        }
    }
    ll l=0,r=1;
    t=n*2+1;
    for(int i=1;i<=n;i++){cin>>c[i]>>f[i];maxn+=c[i];}
    int a,b;ll val;
    while(m--){
        cin>>a>>b>>val;
        r+=val;
        cost[a][b]=cost[b][a]=min(cost[a][b],val);
    }
    Floyd();
    bool flag=false;
    while(l<r){
        ll mid=(l+r)/2;
        Build(mid);
        dinic();
        if(ans>=maxn)r=mid,flag=true;
        else l=mid+1;
    }
    if(flag) cout<<r<<endl;
    else puts("-1");
    return 0;
}

上面的是WA代码,不知道为什么错了。

时间: 2024-10-14 21:53:45

POJ2391 Ombrophobic Bovines(网络流)(拆点)的相关文章

POJ2391 Ombrophobic Bovines 网络流拆点+二分+floyed

题目链接: id=2391">poj2391 题意: 有n块草地,每块草地上有一定数量的奶牛和一个雨棚,并给出了每一个雨棚的容(牛)量. 有m条路径连接这些草地  ,这些路径是双向的,并且非常宽敞,能够容下无限条牛并排走, 给出经过每条路径所须要消耗的时间 问:全部牛都到达雨棚下的最小时间 解题思路: 类似    牛与挤奶器的问题 http://blog.csdn.net/axuan_k/article/details/45920969  已给出基本思路 与上题最大的差别是: 草地既连接源

Poj 2391 Ombrophobic Bovines 网络流 拆点

Poj 2391 Ombrophobic Bovines 网络流 拆点 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approa

解题报告 之 POJ2391 Ombrophobic Bovines

解题报告 之 POJ2391 Ombrophobic Bovines Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rai

poj2391 Ombrophobic Bovines

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20459   Accepted: 4403 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

POJ2391.Ombrophobic Bovines(不喜欢雨的奶牛)——floyd+二分+拆点+最大流

http://poj.org/problem?id=2391 写的挫的最大流会超时~~~ 题目描述: Jack 农场主的奶牛实在是太讨厌被淋湿了.决定在农场设置降雨警报,这样在快要下 雨的时候可以让奶牛们都知道.他们设置设计了一个下雨撤退计划,这样在下雨之前每头奶牛都 能躲到避雨点.然而,天气预报并不总是准确的.为了使得错误的天气预报影响尽可能小,他们 希望尽可能晚地拉响警报,只要保证留有足够的时间让所有的奶牛都能回到避雨点就可以了. 农场有F 块草地,1≤F≤200,奶牛们在草地上吃草.这些草

poj2391 Ombrophobic Bovines 拆点连边要注意

[题意]:给定F个牛棚和P条路径,每条路径有一个长度,现在每个牛棚有一定的容量和牛数,因为牛棚牛数可能大于容量,所以要牛棚之间的牛要进行相互地移动,每移动一个距离就花费一单位的时间,求从开始移动到每头牛都移动到牛棚的最小时间. 一开始自己建图建错了,把每个点i拆成i'和i'',若i-->j有边 就i''连j'容量INF.再就是源点连每个i‘容量为INF,i’连i''容量为牛数,j'连j''容量为牛棚容量,j''连汇点容量为INF. 但是自己忽略了一点 若1->2->3,这是一条链,而1-

POJ 2391 Ombrophobic Bovines 网络流 建模

[题目大意]给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去.(1 <= N <= 200, 1 <= M <= 1500, 0 <= Ai <= 1000, 0 <= Bi <= 1000, 1 <= Dij <= 1,000,000,000) 一开始想拆点建图,0到x集合为汇,值为各个区域的牛数量, Y到终点连边,值为各个区域的容量,然后就是看怎么连x和y了 我一开始把可

Ombrophobic Bovines (poj 2391 网络流+二分+Floyd)

Language: Default Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15733   Accepted: 3434 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in th

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 15时39分22秒 * File Name: poj2391.cpp */ #include <ctime> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring&g