[PR & ML 3] [Introduction] Probability Theory

虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach。奇怪发中文的笔记就很多人看,英文就没有了,其实我觉得英文的写得更好呀。。。囧。。。一边看一边写一边实现,好慢,求同道中人啊。。。

时间: 2024-12-26 00:03:08

[PR & ML 3] [Introduction] Probability Theory的相关文章

[PR & ML 6] [Introduction] Information Theory

[PR & ML 5] [Introduction] Decision Theory

[PR & ML 4] [Introduction] Model Selection & The Curse of Dimension

这两部分内容比较少,都是直觉上的例子和非正式的定义,当然这本书中绝大多数定义都是非正式的,但方便理解.后面深入之后会对这两个章节有详细的阐述.

[PR & ML 2] [Introduction] Example: Polynomial Curve Fitting

啊啊啊,竟然不支持latex,竟然HTML代码不能包含javascript,代码编辑器也不支持Matlab!!!我要吐槽博客的编辑器...T_T只能贴图凑合看了,代码不是图,但这次为了省脑细胞,写的不简洁,凑合看吧... numPoints = 10; lnlambda = [-Inf -18 0]; M = 9; % [0, 1, 3, 9]; x = linspace(0,1); % gt data for plotting t = sin(2*pi*x); ttest = t + norm

CCJ PRML Study Note - Chapter 1.2 : Probability Theory

Chapter 1.2 : Probability Theory Chapter 1.2 : Probability Theory Christopher M. Bishop, PRML, Chapter 1 Introdcution Chapter 1.2 : Probability Theory 1. Uncertainty 2. Example discussed through this chapter 3. Basic Terminology 3.1 Probability densi

一起啃PRML - 1.2 Probability Theory

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in the field of pattern recognition is that of uncertainty. 可以看出概率论在模式识别显然是非常重要的一大块. 读其他书的时候在概率这方面就也很纠结过. 我们也还是通过一个例子来理解一下Probability Theory里面一些重要的概念. Imagine we have two boxes, one red a

Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory

题目原址:C. Ivan the Fool and the Probability Theory 题意:n×m的网格中填黑白格,最多有两个相邻,共用一条边为相邻,有几种填法. 思路:这题比赛写自闭了,一直觉得自己的思路没错,然后就残酷打脸,超级难受的那种. 从不能有3个及以上相邻可以得出,只要有两个相邻的就能确定全部的分布,那就变成了求一行的方法数量,再减去黑白相间的两种,而剩下就是黑白相间两种情况时有多少种了. 一行的求法:dp[ i ] [ 0 ]表示在第 i 个格子里放白色的放法有多少,d

【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉.重复多次. 假设我们40%的概率选到红盒子,60%的概率选到蓝盒子.并且当我们把取出的水果拿掉时,选择盒子中任何一个水果还是等可能的. 问题: 1.整个过程中,取得苹果的概率有多大? 2.假设已经去的了一个橘子的情况下,这个橘子来自蓝盒子的可能性有多大? (这里,推荐一篇好文:数学之美番外篇:平凡而

概率论基础知识(Probability Theory)

概率(Probability):事件发生的可能性的数值度量. 组合(Combination):从n项中选取r项的组合数,不考虑排列顺序.组合计数法则:. 排列(Permutation):从n项中选取r项的组合数,考虑排列顺序.排列计数法则:. 贝叶斯定理(Bayes's Theorem):获取新信息后对概率进行修正的一种方法.先验概率--->新信息--->应用贝叶斯定理--->后验概率.具体请见:贝叶斯定理推导(Bayes's Theorem). 离散型概率分布(Discrete Pro