题意:给定一个有向图有m条单向边,判断是否任意两点都可达(a能到b或者b能到a或者互相可达),即求
弱联通分量。
算法:
先缩点求强连通分量。然后重新建图,判断新图是否是一条单链,即不能分叉,如果分叉了就会存在不可达的情况。
怎么判断是否是单链呢?
就是每次入度为0的点都只有一个,即每次队列里只有一个点。
( o(╯□╰)o。。。。。好像已经是第二次用pair记录原图的点对,然后存pair的vector忘记清空导致wa来wa去! )
#include<cstdio> #include<iostream> #include<cstring> #include<queue> #include<vector> #define maxn 1010 #define maxm 20010 using namespace std; struct node { int to,next; }edge[maxm],edge2[maxm]; int head[maxn],cnt,n; int clk,top,s[maxn],scc,dfn[maxn],low[maxn],belong[maxn]; bool instack[maxn],vis[maxn]; int head2[maxn],cnt2,in[maxn]; typedef pair<int,int> PII; vector<PII> xx; queue<int> q; void add(int x,int y) { edge[cnt].to = y; edge[cnt].next = head[x]; head[x] = cnt++; } void add2(int x,int y) { edge2[cnt2].to = y; edge2[cnt2].next = head2[x]; head2[x] = cnt2++; } void dfs(int x) { dfn[x] = low[x] = clk++; s[top++] = x; instack[x] = true; for(int i=head[x];i!=-1;i = edge[i].next) { int u = edge[i].to; if(dfn[u]==-1) { dfs(u); low[x] = min(low[u],low[x]); } else if(instack[u]) { low[x] = min(low[x],dfn[u]); } } if(low[x]==dfn[x]) { int u; scc++; do { u = s[--top]; instack[u]=false; belong[u] = scc; }while(u!=x); } } void tarjan() { memset(dfn,-1,sizeof(dfn)); memset(instack,0,sizeof(instack)); memset(belong,0,sizeof(belong)); clk = top = scc = 0; for(int i=1;i<=n;i++) { if(dfn[i]==-1) dfs(i); } } bool topo() { memset(vis,0,sizeof(vis)); int c = 0; while(!q.empty()) q.pop(); for(int i=1;i<=scc;i++) { if(!in[i]) { c++; q.push(i); } } if(c>1) return false; while(!q.empty()) { int u = q.front(); q.pop(); if(vis[u]) continue; vis[u] = true; c = 0; for(int i=head2[u];i!=-1;i=edge2[i].next) { int v = edge2[i].to; in[v]--; if(!in[v]) { q.push(v); c++; } } if(c>1) return false; } return true; } int main() { int m,a,b,T; scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); memset(head,-1,sizeof(head)); memset(in,0,sizeof(in)); xx.clear(); cnt = 0; for(int i=1;i<=m;i++) { scanf("%d%d",&a,&b); add(a,b); xx.push_back(make_pair(a,b)); } tarjan(); memset(head2,-1,sizeof(head2)); cnt2 = 0; for(int i=0;i<xx.size();i++) { int u = xx[i].first,v = xx[i].second; if(belong[u]!=belong[v]) { add2(belong[u],belong[v]); in[belong[v]]++; } } if(topo()) printf("Yes\n"); else printf("No\n"); } return 0; }
poj 2762 Going from u to v or from v to u? (判断是否是弱联通图),布布扣,bubuko.com
时间: 2024-10-12 05:23:25