Python--day4--迭代器-生成器-装饰器-目录

迭代器

迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件

特点:

  1. 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容
  2. 不能随机访问集合中的某个值 ,只能从头到尾依次访问
  3. 访问到一半时不能往回退
  4. 便于循环比较大的数据集合,节省内存


names = iter([‘alex‘,‘jack‘,‘list‘])

print(names)

print(names.__next__())  ##2.7    next()

print(names.__next__())

print(names.__next__())

<list_iterator object at 0x000001850C3AA748>

alex

jack

list



生成器

定义:一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator),如果函数中包含yield语法,那这个函数就会变成生成器 .

#!/usr/bin/env python

# -*- coding: utf-8 -*-

def cash_out(amount):

while amount > 0:

amount -= 1

yield 1

print("擦,又来取钱了。。。败家子!")

ATM = cash_out(5)

print(type(ATM))

print("取到钱 %s 万" % ATM.__next__())

print("花掉花掉!")

print("取到钱 %s 万" % ATM.__next__())

print("取到钱 %s 万" % ATM.__next__())

print("花掉花掉!")

print("取到钱 %s 万" % ATM.__next__())

print("取到钱 %s 万" % ATM.__next__())

#print("取到钱 %s 万" % ATM.__next__())  # 到这时钱就取没了,再取就报错了

#print("取到钱 %s 万" % ATM.__next__())



串行        同步

并行        异步



12月7日

yield异步

def consumer(name):

print("%s 准备吃包子啦!" % name)

while True:

baozi = yield

print("包子[%s]来了,被[%s]吃了!" % (baozi, name))

def producer(name):

c = consumer(‘A‘)

c2 = consumer(‘B‘)

c.__next__()

c2.__next__()

print("老子开始准备做包子啦!")

for i in range(10):

time.sleep(1)

print("做了2个包子!")

    c.send(i)

        c2.send(i)

producer("alex")



凡是可以用作for循环的对象都是Iterable类型

凡是可以用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:


1

2


for in [12345]:

    pass

实际上完全等价于:

# 首先获得Iterator对象:it = iter([1, 2, 3, 4, 5])# 循环:while True:    try:        # 获得下一个值:
        x = next(it)    except StopIteration:        # 遇到StopIteration就退出循环
        break

iterator甚至可以表示一个无限大的数据流。

Iterable  可迭代的对象

Iterator  迭代器



装饰器  12/13

封闭:已实现的功能代码  开放:对扩展开放

def w1(func):

def inner():

# 验证1

# 验证2

# 验证3

return func()

return inner

@w1

def f1():

print ‘f1‘

@w1

def f2():

print ‘f2‘

@w1

def f3():

print ‘f3‘

@w1

def f4():

print ‘f4‘

@装饰器



总结:迭代器 访问集合元素的一种方式。  iter()  next()

使用了yield的函数称为生成器。

import  functools

def logging(func):

@functools.wraps(func)

def decorator():

print("%s called" % func.__name__)

result = func()

print("%s end" % func.__name__)

return result

return decorator

# 使用装饰器

@logging

def test01():

return 1

# 测试用例

print(test01())

print(test01.__name__)

#!/usr/bin/env python

#-*- coding: UTF-8 -*-

import functools

def logging(func):

@functools.wraps(func)

def  decorator(*args,**kwargs):

print("%s  called" %func.__name__)

result = func(*args,**kwargs)

print("%s end" %func.__name__)

return result

return decorator

@logging

def test01(a,b):

print("in function  test01,a=%s,b=%s" % (a,b))

return 1

@logging

def test02(a,b,c=1):

print("in  function  test02,a=%s,b=%s,c=%s"%(a,b,c))

return 1

print(test01(1,2))

print(test02(1,2,c=3))



开放--封闭   规定已经实现的功能代码不允许被修改,但是可以被扩展

目录组织方式

关于如何组织一个较好的Python工程目录结构,已经有一些得到了共识的目录结构。在Stackoverflow的这个问题上,能看到大家对Python目录结构的讨论。

这里面说的已经很好了,我也不打算重新造轮子列举各种不同的方式,这里面我说一下我的理解和体会。

假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:

Foo/
|-- bin/
|   |-- foo
|
|-- foo/
|   |-- tests/
|   |   |-- __init__.py
|   |   |-- test_main.py
|   |
|   |-- __init__.py
|   |-- main.py
|
|-- docs/
|   |-- conf.py
|   |-- abc.rst
|
|-- setup.py
|-- requirements.txt
|-- README

简要解释一下:

  1. bin/: 存放项目的一些可执行文件,当然你可以起名script/之类的也行。
  2. foo/: 存放项目的所有源代码。(1) 源代码中的所有模块、包都应该放在此目录。不要置于顶层目录。(2) 其子目录tests/存放单元测试代码; (3) 程序的入口最好命名为main.py
  3. docs/: 存放一些文档。
  4. setup.py: 安装、部署、打包的脚本。
  5. requirements.txt: 存放软件依赖的外部Python包列表。
  6. README: 项目说明文件。

除此之外,有一些方案给出了更加多的内容。比如LICENSE.txt,ChangeLog.txt文件等,我没有列在这里,因为这些东西主要是项目开源的时候需要用到。如果你想写一个开源软件,目录该如何组织,可以参考这篇文章

下面,再简单讲一下我对这些目录的理解和个人要求吧。

关于README的内容

这个我觉得是每个项目都应该有的一个文件,目的是能简要描述该项目的信息,让读者快速了解这个项目。

它需要说明以下几个事项:

  1. 软件定位,软件的基本功能。
  2. 运行代码的方法: 安装环境、启动命令等。
  3. 简要的使用说明。
  4. 代码目录结构说明,更详细点可以说明软件的基本原理。
  5. 常见问题说明。

我觉得有以上几点是比较好的一个README。在软件开发初期,由于开发过程中以上内容可能不明确或者发生变化,并不是一定要在一开始就将所有信息都补全。但是在项目完结的时候,是需要撰写这样的一个文档的。

可以参考Redis源码中Readme的写法,这里面简洁但是清晰的描述了Redis功能和源码结构。

关于requirements.txt和setup.py

setup.py

一般来说,用setup.py来管理代码的打包、安装、部署问题。业界标准的写法是用Python流行的打包工具setuptools来管理这些事情。这种方式普遍应用于开源项目中。不过这里的核心思想不是用标准化的工具来解决这些问题,而是说,一个项目一定要有一个安装部署工具,能快速便捷的在一台新机器上将环境装好、代码部署好和将程序运行起来。

这个我是踩过坑的。

我刚开始接触Python写项目的时候,安装环境、部署代码、运行程序这个过程全是手动完成,遇到过以下问题:

  1. 安装环境时经常忘了最近又添加了一个新的Python包,结果一到线上运行,程序就出错了。
  2. Python包的版本依赖问题,有时候我们程序中使用的是一个版本的Python包,但是官方的已经是最新的包了,通过手动安装就可能装错了。
  3. 如果依赖的包很多的话,一个一个安装这些依赖是很费时的事情。
  4. 新同学开始写项目的时候,将程序跑起来非常麻烦,因为可能经常忘了要怎么安装各种依赖。

setup.py可以将这些事情自动化起来,提高效率、减少出错的概率。"复杂的东西自动化,能自动化的东西一定要自动化。"是一个非常好的习惯。

setuptools的文档比较庞大,刚接触的话,可能不太好找到切入点。学习技术的方式就是看他人是怎么用的,可以参考一下Python的一个Web框架,flask是如何写的: setup.py

当然,简单点自己写个安装脚本(deploy.sh)替代setup.py也未尝不可。

requirements.txt

这个文件存在的目的是:

  1. 方便开发者维护软件的包依赖。将开发过程中新增的包添加进这个列表中,避免在setup.py安装依赖时漏掉软件包。
  2. 方便读者明确项目使用了哪些Python包。

这个文件的格式是每一行包含一个包依赖的说明,通常是flask>=0.10这种格式,要求是这个格式能被pip识别,这样就可以简单的通过 pip install -r requirements.txt来把所有Python包依赖都装好了。具体格式说明: 点这里

关于配置文件的使用方法

注意,在上面的目录结构中,没有将conf.py放在源码目录下,而是放在docs/目录下。

很多项目对配置文件的使用做法是:

  1. 配置文件写在一个或多个python文件中,比如此处的conf.py。
  2. 项目中哪个模块用到这个配置文件就直接通过import conf这种形式来在代码中使用配置。

这种做法我不太赞同:

  1. 这让单元测试变得困难(因为模块内部依赖了外部配置)
  2. 另一方面配置文件作为用户控制程序的接口,应当可以由用户自由指定该文件的路径。
  3. 程序组件可复用性太差,因为这种贯穿所有模块的代码硬编码方式,使得大部分模块都依赖conf.py这个文件。

所以,我认为配置的使用,更好的方式是,

  1. 模块的配置都是可以灵活配置的,不受外部配置文件的影响。
  2. 程序的配置也是可以灵活控制的。

能够佐证这个思想的是,用过nginx和mysql的同学都知道,nginx、mysql这些程序都可以自由的指定用户配置。

所以,不应当在代码中直接import conf来使用配置文件。上面目录结构中的conf.py,是给出的一个配置样例,不是在写死在程序中直接引用的配置文件。可以通过给main.py启动参数指定配置路径的方式来让程序读取配置内容。当然,这里的conf.py你可以换个类似的名字,比如settings.py。或者你也可以使用其他格式的内容来编写配置文件,比如settings.yaml之类的。



def  login(func):

def inner(arg):

print()

func(arg)

return  inner

@login

tv("Alex")



递归   调用自己算法

def func(arg1,arg2,stop):

if arg1 ==0:

print(arg1,arg2)

arg3 = arg1 + arg2

print(arg3)

if arg3<stop:

func(arg2,arg3,stop)

func(0,1,30)

#!/usr/bin/env python

# -*- coding: utf-8 -*-

##二分

def binary_search(data_source,find_n):

mid=int(len(data_source)/2)

if len(data_source)  >= 1:

if  data_source[mid]   > find_n:

print("data in  left  of {}".format(data_source[mid]))

binary_search(data_source[:mid],find_n)

elif  data_source[mid]  <  find_n:

print("data in ringt of {}".format(data_source[mid]))

binary_search(data_source[mid:],find_n)

else:

print("found  find_s," , find_n)

else:

print("这些找不到")

if  __name__==‘__main__‘:

data = list(range(1,6))

#print(data)

binary_search(data,2)



a = [[col for col in range(4)] for row in range(4)]

for r_index,row in enumerate(a):
for c_index in range(r_index,len(row)):
tmp = a[c_index][r_index]
a[c_index][r_index] = row[c_index]
a[r_index][c_index] = tmp

for r in a :
print(r)



本文出自 “何全” 博客,请务必保留此出处http://hequan.blog.51cto.com/5701886/1886276

时间: 2024-10-06 09:28:24

Python--day4--迭代器-生成器-装饰器-目录的相关文章

Python 迭代器&amp;生成器,装饰器,递归,算法基础:二分查找、二维数组转换,正则表达式,作业:计算器开发

本节大纲 迭代器&生成器 装饰器  基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式,运算后得出结果,结果必须与真实的计算器所得出的结果一致 迭代器&

python学习笔记(5)--迭代器,生成器,装饰器,常用模块,序列化

生成器 在Python中,一边循环一边计算的机制,称为生成器:generator. 如: 1 >>> g = (x * x for xin range(10)) 2 >>> g3 <generator object <genexpr> at 0x1022ef630> 此处g就是一个生成器. 迭代器 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是gene

python 迭代器 生成器 装饰器

迭代器 可以直接作用于for循环的对象统称为可迭代对象(Iterable). 可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator). 所有的Iterable均可以通过内置函数iter()来转变为Iterator. names = iter(['sun', 'ibm', 'sunny']) print(names) print(names.__next__()) print(names.__next__()) print(names.__next__()) print(

Python 全栈开发五 迭代器 生成器 装饰器

一.迭代器 迭代器是一个可以记住遍历的位置的对象.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退. 迭代器有两个基本的方法:iter() 和 next(). 字符串,列表或元组对象都可用于创建迭代器,生成迭代器的方法是iter(): >>li = [1,2,3,4,5] >>it = iter(li) #生成一个迭代器 >>it.__next__() 1 >>next(it) #以上两种next都可以使用 2 >

迭代器/生成器/装饰器

迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常 可迭代对象 如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration),默认的list.tuple.stri.dict对象都是可以迭代的. isinstance(obj

迭代器,生成器,装饰器,递归

迭代器 可迭代对象 1)定义:在python中,但凡内部含有--itter--方法的对象,都是可迭代对象 可以通过dir()去判断一个对象具有什么方法 dir()会返回一个列表,这个列表中含有该对象的以字符串形式的所有方法 从字面意思来说:可迭代对象就是一个可以重复取值的数据集. 从专业角度来说:但凡内部含有iter方法的对象,都是可迭代对象 . 可迭代对象可以通过判断该对象是否有’iter’方法来判断. 可迭代对象的优点: 可以直观的查看里面的数据.操作方法多,灵活 可迭代对象的缺点: 1.占

Day4 - 迭代器&amp;生成器、装饰器、Json &amp; pickle 数据序列化、软件目录结构规范

---恢复内容开始--- 本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 需求:列表a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1 1 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 2 b = [] 3 for i in a: 4 b.append(i+1) 5 a = b 6 print(a) 普通青

Day4 - Python基础4 迭代器、装饰器、软件开发规范

Python之路,Day4 - Python基础4 (new版) 本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 孩子,我现在有个需求,看列表[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],我要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 >>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>

Python_Day5_迭代器、装饰器、软件开发规范

本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 1.列表生成式,迭代器&生成器 列表生成 >>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 生成器 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访