(版本定制)第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

本期内容:

1、数据接收架构设计模式

2、数据接收源码彻底研究

1、Receiver接受数据的过程类似于MVC模式:

Receiver,ReceiverSupervisor和Driver的关系相当于Model,Control,View,也就是MVC。

Model就是Receiver,存储数据Control,就是ReceiverSupervisor,Driver是获得元数据,也就是View。

2、数据的位置信息会被封装到RDD里面。

3、Receiver接受数据,交给ReceiverSupervisor去存储数据。

4、ReceiverTracker是通过发送一个又一个的Job,每个Job只有一个Task,每个Task里面就只有一个ReceiverSupervisor,用这个函数启动每一个Receiver。

下面我们简单的看下Receiver启动流程,应用程序首先通过JobScheduler的start方法来启动receiverTracker的start方法:

def start(): Unit = synchronized {if (eventLoop != null) return // scheduler has already been started

logDebug("Starting JobScheduler")eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)

override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)  }eventLoop.start()

// attach rate controllers of input streams to receive batch completion updatesfor {    inputDStream <- ssc.graph.getInputStreams    rateController <- inputDStream.rateController} ssc.addStreamingListener(rateController)

listenerBus.start(ssc.sparkContext)receiverTracker = new ReceiverTracker(ssc)inputInfoTracker = new InputInfoTracker(ssc)receiverTracker.start() //receiver启动jobGenerator.start()  logInfo("Started JobScheduler")}

通过调用receiverTracker.start()方法来进行一系列的操作:

/** Start the endpoint and receiver execution thread. */def start(): Unit = synchronized {if (isTrackerStarted) {throw new SparkException("ReceiverTracker already started")  }

if (!receiverInputStreams.isEmpty) {endpoint = ssc.env.rpcEnv.setupEndpoint("ReceiverTracker", new ReceiverTrackerEndpoint(ssc.env.rpcEnv)) //Rpc消息通信,获取receiver的状态if (!skipReceiverLaunch) launchReceivers() //启动receiver    logInfo("ReceiverTracker started")trackerState = Started}}

下面通过画图简单的描述下Receiver启动的内部机制:

参考博客:http://blog.csdn.net/hanburgud/article/details/51471047

http://lqding.blog.51cto.com/9123978/1774426

备注:

资料来源于:DT_大数据梦工厂(Spark发行版本定制)

更多私密内容,请关注微信公众号:DT_Spark

如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580

时间: 2024-10-11 12:26:23

(版本定制)第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考的相关文章

Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

本期内容 : 数据接收架构设计模式 数据接收源码彻底研究 一.Spark Streaming数据接收设计模式   Spark Streaming接收数据也相似MVC架构: 1. Mode相当于Receiver存储数据,C级别的,Receiver是个抽象因为他有好多的Receiver 2. ReceiverSupervisor 是控制器,因为Receiver启动是靠ReceiverSuperior启动的,及接收到的数据交给ReceiverSuperior存储数据的 3. Driver会获得源数据,

第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

上一课我们讲解了Receiver启动的流程.Receiver是通过ReceiverSupervisor的start方法启动的: /** Start the supervisor */ def start() {   onStart()   startReceiver() } 首先会调用ReceiverSupervisor的onStart()方法, override protected def onStart() {   registeredBlockGenerators.foreach { _.

Spark发行版笔记10:Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收

Spark 定制版:009~Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

本讲内容: a. Receiver启动的方式设想 b. Receiver启动源码彻底分析 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上一讲中,我们给大家具体分析了RDD的物理生成和逻辑生成过程,彻底明白DStream和RDD之间的关系,及其内部其他有关类的具体依赖等信息: a. DStream是RDD的模板,其内部generatedRDDs 保存了每个BatchDuration时间生成的RDD对象实例.DStream的依赖构成了RDD

(版本定制)第13课:Spark Streaming源码解读之Driver容错安全性

本期内容:1. ReceiverBlockTracker容错安全性 2. DStream和JobGenerator容错安全性 一:容错安全性 1. ReceivedBlockTracker负责管理Spark Streaming运行程序的元数据.数据层面 2. DStream和JobGenerator是作业调度的核心层面,也就是具体调度到什么程度了,从运行的考虑的.DStream是逻辑层面. 3. 作业生存层面,JobGenerator是Job调度层面,具体调度到什么程度了.从运行的角度的. 谈D

第9课:Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

一:Receiver启动的方式设想 1. Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job. 2. Receiver属于Spark Streaming应用程序启动阶段,那么我们找Receiver在哪里启动就应该去找Spark Streaming的启动. 3. Receivers和InputDStreams是一一对应的,默认情况下一般只有一个Receiver.

第15课:Spark Streaming源码解读之No Receivers彻底思考

本期内容: Direct Access Kafka 前面有几期我们讲了带Receiver的Spark Streaming 应用的相关源码解读.但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Approach)的方式,No Receiver的方式的优势: 1. 更强的控制自由度 2. 语义一致性 其实No Receivers的方式更符合我们读取数据,操作数据的思路的.因为Spark 本身是一个计算框架,他底层会有数据来源,如果没有Receive

第16课:Spark Streaming源码解读之数据清理内幕彻底解密

本期内容: Spark Streaming数据清理原因和现象 Spark Streaming数据清理代码解析 对Spark Streaming解析了这么多课之后,我们越来越能感知,Spark Streaming只是基于Spark Core的一个应用程序,因此掌握Spark Streaming对于我们怎么编写Spark应用是绝对有好处的. Spark Streaming 不像Spark Core的应用程序,Spark Core的应用的数据是存储在底层文件系统,如HDFS等别的存储系统中,而Spar

Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

一:Receiver启动的方式设想 1. Spark Streaming通过Receiver持续不断的从外部数据源接收数据,并把数据汇报给Driver端,由此每个Batch Durations就可以根据汇报的数据生成不同的Job. 2. Receiver属于Spark Streaming应用程序启动阶段,那么我们找Receiver在哪里启动就应该去找Spark Streaming的启动. 3. Receivers和InputDStreams是一一对应的,默认情况下一般只有一个Receiver.