转:RSA算法原理说明

转:http://www.joenchen.com/archives/979

RSA算法可以说在我们使用计算机的每一方面都在发挥着作用, EXE文件的签名算法用的是SHA1 + RSA. 我们每天登陆网银, 使用QQ 无时不刻都在使用着RSA算法. 发明这算法的人, 真心牛逼.

搞这种算法才知道, 数学基础是那么的重要. 尼玛, 以前老师教的时候, 为什么不这样说. 不如是的告诉我们. 工作以后才发现, 在计算机领域数学是必备的学科, 数学学的是否良好. 直接关系到在计算机领域能够专研的深度. 再说回来, 发明这算法的人也太牛逼了.

所以我不准备详细的说这个算法的细节, 估计讲也讲不清楚, 这里有一篇文章讲RSA非常的不错.

http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html

在我们写代码的过程中也是经常会接触这种算法的. 主要了解如何使用这种算法..

RSA算法简单描述

找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d *e%t ==1

这样最终得到三个数: n d e

设消息为数M (M <n)
设c=(M**d)%n 就得到了加密后的消息c
设m=(c**e)%n 则 m == M, 从而完成对c的解密.
注:**表示次方, 上面两式中的d和e可以互换.

在非对称加密中:
n e两个数构成公钥,可以告诉别人.
n d两个数构成私钥,d自己保留, 不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用e加密,这样只有拥有d的你能够对其解密。

RSA的安全性在于对于一个大数n,没有有效的方法能够将其分解, 从而在已知n d的情况下无法获得e,同样在已知n e的情况下无法求得d.为什么无法求的. 这个就不管了. 数学家搞这个吧.

实际生成p, q的过程, 一般使用工具来做RSATool就是一款非常优秀的工具, 可以指定生成多少位的RSA. 指定好E. p, q, n, d都帮我们生成好了.看雪加密解密3里面有一个例子我准备贴出来.

//
// 初始化MIRACL系统, 初始化500位的10进行制数
//
mip = mirsys( 500, 16 );
 
/* MIRACL大数运算库运算
 * p=C75CB54BEDFA30AB
 * q=A554665CC62120D3
 * n=80C07AFC9D25404D6555B9ACF3567CF1
 * d=651A40B9739117EF505DBC33EB8F442D
 * e=10001
 * 128 bit
 */
mip->IOBASE = 16;             // 设定16进制模式
n = mirvar( 0 );              // 初始化变量
e = mirvar( 0 );
m = mirvar( 0 );              // m 放明文:注册码
c = mirvar( 0 );              // c 放密文
 
cinstr( m, szSerial );              // 将输入的序列号转换成大数 ,这里szSerial
cinstr( n, "80C07AFC9D25404D6555B9ACF3567CF1" );    // 初始化模数n
cinstr( e, "10001" );
 
if( compare( m, n ) == -1 )             // m < n ,才能对消息m加密
{
    powmod( m, e, n, c );               // 计算明文 c= m ^ e mod n
 
    big_to_bytes( 0, c, szBuffer, FALSE );      // 将 c 从大数转换成字节数组
 
    mirkill( n );
    mirkill( e );
    mirkill( m );
    mirkill( c );
    mirexit();
 
    if( lstrcmp( szName, szBuffer ) != 0 )         // 比较姓名与序列号加密后数据的是否相等?
    {
        SetDlgItemText( hWnd, IDC_Serial, "Wrong Serial!" );
        return FALSE;
    }
    else
    {
        SetDlgItemText( hWnd, IDC_Serial, "Success!" );
        return TRUE;
    }
}

事实上, RSA算法也是可逆的. 用私钥加密出来的, 用公钥也可以解.. 上面这段代码是加密解密3里面的, 正常来说,
这段代码会出现在发布的程序里面, 用来验证用户名. 是否正确. 这里匹配的是用公钥和密文做运算, 计算出明文.. 这段代码有点奇怪,
和我们理解RSA算法有点相反.重点是记住, 虽然RSA是非对称加密算法, 但是如果你有公钥, 私钥. 其实是可逆的.
下面这段代码是用私钥求序列号的.

mip = mirsys( 500, 16 );
/* MIRACL大数运算库运算
 * p=C75CB54BEDFA30AB
 * q=A554665CC62120D3
 * n=80C07AFC9D25404D6555B9ACF3567CF1
 * d=651A40B9739117EF505DBC33EB8F442D
 * e=10001
 * 128 bit
 */
mip->IOBASE = 16;                              // 16进制模式
c = mirvar( 0 );                               // MIRACL的大数类型
n = mirvar( 0 );
d = mirvar( 0 );
m = mirvar( 0 );
 
bytes_to_big( dtLength, szName, c );           // 将姓名转换成大数
 
cinstr( n, "80C07AFC9D25404D6555B9ACF3567CF1" ); // 初始化模数n
cinstr( d, "651A40B9739117EF505DBC33EB8F442D" ); // 初始化私钥d
 
powmod( c, d, n, m );                           // 计算m = (c ^ d) mod n
cotstr( m, szSerial );                          // 将m的16进制串表示写入szSerial中,即为注册码
 
SetDlgItemText( hWnd, IDC_Serial, szSerial );
 
mirkill( c );
mirkill( n );
mirkill( d );
mirkill( m );
mirexit();

正如看雪 加密解密3中所说的, 在实际应用中, 如果我们跟出来了. n和e.. 这个在用公钥计算密文的时候会用到, 跟到n和e以后,
我们就可以利用RSATool之类的工具生成与目标软件中的n相同位数的长度的n, 这时候的 d, p, q我们都知道了. 然后替换软件中的n.
然后利用自己的d就可以写出注册机了..  当然在网络传输的过程当中也差不多. 实在不行就模拟一个服务端, 改写本地平台的n. 模拟一个d解密.

还有, 实际使用的时候, n一定要搞长一点, 1024. 以上才能保证安全, 刚才用RSATool算了一个128位的因式分解. 一会就求出来了.. 如果太短了. 形同虚设.. 另外加密解密3. 另外一个客户端, 服务端的例子也很不错..

时间: 2024-10-22 02:58:21

转:RSA算法原理说明的相关文章

SSH原理与运用(一)和(二):远程登录 RSA算法原理(一)和(二)

SSH原理与运用(一)和(二):远程登录  RSA算法原理(一)和(二) http://www.ruanyifeng.com/blog/2011/12/ssh_remote_login.html http://www.ruanyifeng.com/blog/2011/12/ssh_port_forwarding.html RSA算法原理(一) http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html RSA算法原理(二)

支付宝支付流程与RSA算法原理

支付宝支付流程与RSA算法原理 RSA加密算法的原理 支付宝的三种支付流程 1.所有的支付逻辑处理,全在服务器完成,现在被淘汰了 原理就是电商App吧所有的信息提交给电商服务器,然后又电商服务器与支付宝服务器进行交互 2.所有的支付逻辑处理,是电商APP调用手机的支付宝客户端,然后由支付宝客户端和支付宝服务器进行交互处理. 原理就是电商APP向电商服务器发送请求,然后电商服务器生成订单信息 后,返回给电商APP,电商APP进行付款时,需要进行判断用户有没有支付宝客户端. 如果没有,则不能支付,提

RSA算法原理(一)

来源:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加密:

RSA算法原理(转)

如果你问我,哪一种算法最重要?我可能会回答“公钥加密算法”.因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是”公钥加密算法”. 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行加密: (2)乙方使用同一种规则,对信息进行解密. 由于加密和解密使用同样规则(简称”密钥”),这被称为“对称加密算法”(Symmetric-key algorithm). 这种加密

RSA算法原理1

必备数学知识 RSA加密算法中,只用到素数.互质数.指数运算.模运算等几个简单的数学知识.所以,我们也需要了解这几个概念即可. 素数 素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数.这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了. 互质数 百度百科上的解释是:公因数只有1的两个数,叫做互质数.:维基百科上的解释是:互质,又称互素.若N个整数的最大公因子是1,则称这N个整数互质. 常见的互质数判断方法主要有以下几种: 两个不同的质数一定

(转) RSA算法原理(一)

最近用到了RSA加密算法,虽然有现成的,但是想看看它的原理,翻到此文,感觉写得很好,通俗易懂,转了. 作者: 阮一峰 日期: 2013年6月27日 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是同一种模式: (1)甲方选择某一种加密规则,对信息进行

RSA算法原理(简单易懂)

1. 什么是RSA RSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法.在了解RSA算法之前,先熟悉下几个术语 根据密钥的使用方法,可以将密码分为对称密码和公钥密码 对称密码:加密和解密使用同一种密钥的方式 公钥密码:加密和解密使用不同的密码的方式,因此公钥密码通常也称为非对称密码. 2. RSA加密 RSA的加密过程可以使用一个通式来表达 密文=明文EmodN密文=明文EmodN 也就是说RSA加密是对明文的E次方后除以N后求余数的过程.就这么简单?对,就是这么简单. 从

RSA算法原理及实现

参考资料: 阮哥的日志:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html github的参考代码:https://github.com/buptchi/RSA/blob/master/rsa.py 薄薄的密码学课本:<现代密码学>第二版陈鲁生 等编著 写在前面:在DES之后,又迎

RSA算法原理(二)

上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解RSA算法.假设爱丽丝要与鲍勃进行加密通信,她该怎么生成公钥和私钥呢? 第一步,随机选择两个不相等的质数p和q. 爱丽丝选择了61和53.(实际应用中,这两个质数越大,就越难破解.) 第二步,计算p和q的乘积n. 爱丽丝就把61和53相乘. n = 61×53 = 3233 n的长度就是密钥长度.3233写成二进制是110010100001,一共有