【转】用python实现简单的文本情感分析

import jieba
import numpy as np

# 打开词典文件,返回列表
def open_dict(Dict=‘hahah‘,path = r‘/Users/zhangzhenghai/Downloads/Textming/‘):
    path = path + ‘%s.txt‘ %Dict
    dictionary = open(path, ‘r‘, encoding=‘utf-8‘)
    dict = []
    for word in dictionary:
        word = word.strip(‘\n‘)
        dict.append(word)
    return dict

def judgeodd(num):
    if num % 2 == 0:
        return ‘even‘
    else:
        return ‘odd‘

deny_word = open_dict(Dict=‘否定词‘)
posdict = open_dict(Dict=‘positive‘)
negdict = open_dict(Dict = ‘negative‘)

degree_word = open_dict(Dict = ‘程度级别词语‘,path=r‘/Users/zhangzhenghai/Downloads/Textming/‘)
mostdict = degree_word[degree_word.index(‘extreme‘)+1: degree_word.index(‘very‘)] #权重4,即在情感前乘以3
verydict = degree_word[degree_word.index(‘very‘)+1: degree_word.index(‘more‘)] #权重3
moredict = degree_word[degree_word.index(‘more‘)+1: degree_word.index(‘ish‘)]#权重2
ishdict = degree_word[degree_word.index(‘ish‘)+1: degree_word.index(‘last‘)]#权重0.5

def sentiment_score_list(dataset):
    seg_sentence = dataset.split(‘。‘)

    count1 = []
    count2 = []
    for sen in seg_sentence: # 循环遍历每一个评论
        segtmp = jieba.lcut(sen, cut_all=False) # 把句子进行分词,以列表的形式返回
        i = 0 #记录扫描到的词的位置
        a = 0 #记录情感词的位置
        poscount = 0 # 积极词的第一次分值
        poscount2 = 0 # 积极反转后的分值
        poscount3 = 0 # 积极词的最后分值(包括叹号的分值)
        negcount = 0
        negcount2 = 0
        negcount3 = 0
        for word in segtmp:
            if word in posdict: # 判断词语是否是情感词
                poscount +=1
                c = 0
                for w in segtmp[a:i]: # 扫描情感词前的程度词
                    if w in mostdict:
                        poscount *= 4.0
                    elif w in verydict:
                        poscount *= 3.0
                    elif w in moredict:
                       poscount *= 2.0
                    elif w in ishdict:
                        poscount *= 0.5
                    elif w in deny_word: c+= 1
                if judgeodd(c) == ‘odd‘: # 扫描情感词前的否定词数
                    poscount *= -1.0
                    poscount2 += poscount
                    poscount = 0
                    poscount3 = poscount + poscount2 + poscount3
                    poscount2 = 0
                else:
                    poscount3 = poscount + poscount2 + poscount3
                    poscount = 0
                a = i+1
            elif word in negdict: # 消极情感的分析,与上面一致
                negcount += 1
                d = 0
                for w in segtmp[a:i]:
                    if w in mostdict:
                        negcount *= 4.0
                    elif w in verydict:
                        negcount *= 3.0
                    elif w in moredict:
                        negcount *= 2.0
                    elif w in ishdict:
                        negcount *= 0.5
                    elif w in degree_word:
                        d += 1
                if judgeodd(d) == ‘odd‘:
                    negcount *= -1.0
                    negcount2 += negcount
                    negcount = 0
                    negcount3 = negcount + negcount2 + negcount3
                    negcount2 = 0
                else:
                    negcount3 = negcount + negcount2 + negcount3
                    negcount = 0
                a = i + 1
            elif word == ‘!‘ or word == ‘!‘: # 判断句子是否有感叹号
                for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
                    if w2 in posdict or negdict:
                        poscount3 += 2
                        negcount3 += 2
                        break
            i += 1

            # 以下是防止出现负数的情况
            pos_count = 0
            neg_count = 0
            if poscount3 <0 and negcount3 > 0:
                neg_count += negcount3 - poscount3
                pos_count = 0
            elif negcount3 <0 and poscount3 > 0:
                pos_count = poscount3 - negcount3
                neg_count = 0
            elif poscount3 <0 and negcount3 < 0:
                neg_count = -pos_count
                pos_count = -neg_count
            else:
                pos_count = poscount3
                neg_count = negcount3
            count1.append([pos_count,neg_count])
        count2.append(count1)
        count1=[]

    return count2

def sentiment_score(senti_score_list):
    score = []
    for review in senti_score_list:
        score_array =  np.array(review)
        Pos = np.sum(score_array[:,0])
        Neg = np.sum(score_array[:,1])
        AvgPos = np.mean(score_array[:,0])
        AvgPos = float(‘%.lf‘ % AvgPos)
        AvgNeg = np.mean(score_array[:, 1])
        AvgNeg = float(‘%.1f‘ % AvgNeg)
        StdPos = np.std(score_array[:, 0])
        StdPos = float(‘%.1f‘ % StdPos)
        StdNeg = np.std(score_array[:, 1])
        StdNeg = float(‘%.1f‘ % StdNeg)
        score.append([Pos,Neg,AvgPos,AvgNeg,StdPos,StdNeg])
    return score

data = ‘用了几天又来评价的,手机一点也不卡,玩荣耀的什么的不是问题,充电快,电池够大,玩游戏可以玩几个小时,待机应该可以两三天吧,很赞‘
data2 = ‘不知道怎么讲,真心不怎么喜欢,通话时声音小,新手机来电话竟然卡住了接不了,原本打算退,刚刚手机摔了,又退不了,感觉不会再爱,像素不知道是我不懂还是怎么滴 感觉还没z11mini好,哎要我怎么评价 要我如何喜欢努比亚 太失望了‘

print(sentiment_score(sentiment_score_list(data)))
print(sentiment_score(sentiment_score_list(data2)))

情感分析简介:

情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。

原理
比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”
① 情感词
要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。
里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。
② 程度词
“好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值*4,”较“,”还算“就情感分值*2,”只算“,”仅仅“这些就*0.5了。那么这句话的情感分值就是:4*1+1*2-1*4+1=3
③ 感叹号
可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:4*1+1*2-1*4-2+1 = 1
④ 否定词
明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就*-1,但如果是偶数,那情感就没有反转,还是*1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,*-1。
因此这句话的准确情感分值是:4*1+1*2-1*4-2+1*-1 = -1
⑤ 积极和消极分开来
再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7“
⑥ 以分句的情感为基础
再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]] 
以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。
算法设计
第一步:读取评论数据,对评论进行分句。
第二步:查找对分句的情感词,记录积极还是消极,以及位置。
第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。
第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。
第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。
第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。
第七步:计算并记录所有评论的情感值。
第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。

转自:https://zhuanlan.zhihu.com/p/23225934

原作者提供了下载链接: https://pan.baidu.com/s/1jIRoOxK 密码: 6wq4

存粹转发,留着以后自己用,后经试验部分代码健壮性差点(评论文字稍长,程序报错),需要的时候再加固。

时间: 2024-11-10 10:21:57

【转】用python实现简单的文本情感分析的相关文章

主题模型及其在文本情感分析中的应用

随着Web2.0技术的出现和发展,互联网上(包括门户网站.电子商务网站.社交网站.音/视频分享网站.论坛.博客.微博等)产生了海量的.由用户发表的对于诸如人物.事件.产品等目标实体的评论信息.例如,下面这两个短文本评论:(1)“比较了多个智能手机后选择了8150,性价比还可以.另外,就是考虑到它是3.7的屏幕,大小比较合适,否则携带很不方便.”(京东商城用户,2011.11.25):(2)“我以前在杭州做二手房地产,用温州炒房客的话说:全世界房价降了,杭州的房价永远不会降,因为他们有一道坚不可摧

LSTM 文本情感分析/序列分类 Keras

LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_excel('neg.xls',header=None,index=None) pos=pd.read_excel('pos.xls',header=None,index=None) #读取训练语料完毕 pos['mark']=1 neg['mark']=0 #给训练语料贴上标签 pn=pd.concat

文本情感分析的基础在于自然语言处理、情感词典、机器学习方法等内容。以下是我总结的一些资源。

词典资源:SentiWordNet<知网>中文版中文情感极性词典 NTUSD情感词汇本体下载 自然语言处理工具和平台:哈尔滨工业大学社会计算与信息检索研究中心isnowfy/snownlp · GitHub 汉语分词:自然语言处理与信息检索共享平台 NLPIR.orgfxsjy/jieba · GitHub 语料资源:信息分类与情感发现 课程:斯坦福大学自然语言处理第七课"情感分析(Sentiment Analysis)" 网站和博客:Text Classification

文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示

现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题. 通过这个情感分析的题目,我会整理做特征工程.参数调优和模型融合的方法,这一系列会有四篇文章.这篇文章整理文本特征工程的内容. 文本的特征工程主要包括数据清洗.特征构造.降维和特征选择等. 首先是数据清洗,比如去停用词.去非字母汉字的特殊字符.大写转小写.去掉html标签等. 然后

文本情感分析(二):基于word2vec和glove词向量的文本表示

上一篇博客用词袋模型,包括词频矩阵.Tf-Idf矩阵.LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题. 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用word2vec词向量和glove词向量进行文本表示,训练随机森林分类器. 一.训练word2vec词向量 Kaggle情感分析题给出了三个数据集,一个是带标签的训练集,共25000条评论,一个是测试集,无标签的,用来做预测并提交结果,这两个数据集是上一篇文章里我们用过的. 此外还有一个无标签的数据

动手学深度学习--文本情感分析之RNN

?本分类是?然语?处理的?个常?任务,它把?段不定?的?本序列变换为?本的类别.它的?个?问题:使??本情感分类来分析?本作者的情绪.这个问题也叫情感分析,并有着?泛的应?.例如,我们可以分析?户对产品的评论并统计?户的满意度,或者分析?户对市场?情的情绪并?以预测接下来的?情. 这里将应?预训练的词向量和含多个隐藏层的双向循环神经?络,来判断?段不定?的?本序列中包含的是正?还是负?的情绪. 1.导入包和模块 1 import collections 2 import os 3 import

R语言对推特数据进行文本情感分析

美国调查公司盖洛普公司(Gallup poll found)民调显示,至少51%美国人不赞同总统特朗普的政策.据外媒报道,特朗普上任8天以来引发51%美国人的不满,42%美国人赞同新总统的政策.该项调查共有1500名成年美国人,误差为3%. 为了验证美国民众的不满情绪,我们以R语言抓取的特朗普推特数据为例,对数据进行文本挖掘,进一步进行情感分析,从而得到很多有趣的信息. 找到推特来源是苹果手机或者安卓手机的样本,清理掉其他来源的样本 tweets <-trump_tweets_df>%sele

python requests 简单网页文本爬取

爬取网页: http://www.cnblogs.com/xrq730/archive/2018/06/11/9159586.html 抓取的是一个博客的文本内容 用requeusts获取整个网页的HTML信息: 使用Beautiful Soup解析HTML信息 1 import requests 2 from bs4 import BeautifulSoup 3 4 5 if __name__=='__main__': 6 target='http://www.cnblogs.com/xrq7

文本情感分类(一):传统模型

前言:四五月份的时候,我参加了两个数据挖掘相关的竞赛,分别是物电学院举办的"亮剑杯",以及第三届 "泰迪杯"全国大学生数据挖掘竞赛.很碰巧的是,两个比赛中,都有一题主要涉及到中文情感分类工作.在做"亮剑杯"的时候,由于我还是初涉,水平有限,仅仅是基于传统的思路实现了一个简单的文本情感分类模型.而在后续的"泰迪杯"中,由于学习的深入,我已经基本了解深度学习的思想,并且用深度学习的算法实现了文本情感分类模型.因此,我打算将两个不同