转载:linux内存管理

在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要。在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况。运行 top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式 -- 用基于 top 的命令,可以控制显示方式等等。退出 top 的命令为 q (在 top 运行中敲 q 键一次)。

top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器

  可以直接使用top命令后,查看%MEM的内容。可以选择按进程查看或者按用户查看,如想查看oracle用户的进程内存使用情况的话可以使用如下的命令:
  $ top -u oracle

内容解释:

  PID:进程的ID
  USER:进程所有者
  PR:进程的优先级别,越小越优先被执行
  NInice:值
  VIRT:进程占用的虚拟内存
  RES:进程占用的物理内存
  SHR:进程使用的共享内存
  S:进程的状态。S表示休眠,R表示正在运行,Z表示僵死状态,N表示该进程优先值为负数
  %CPU:进程占用CPU的使用率
  %MEM:进程使用的物理内存和总内存的百分比
  TIME+:该进程启动后占用的总的CPU时间,即占用CPU使用时间的累加值。
  COMMAND:进程启动命令名称

  操作实例:

  在命令行中输入 “top”

  即可启动 top

  top 的全屏对话模式可分为3部分:系统信息栏、命令输入栏、进程列表栏。

  第一部分 -- 最上部的 系统信息栏 :

  第一行(top):

    “00:11:04”为系统当前时刻;

    “3:35”为系统启动后到现在的运作时间;

    “2 users”为当前登录到系统的用户,更确切的说是登录到用户的终端数 -- 同一个用户同一时间对系统多个终端的连接将被视为多个用户连接到系统,这里的用户数也将表现为终端的数目;

    “load average”为当前系统负载的平均值,后面的三个值分别为1分钟前、5分钟前、15分钟前进程的平均数,一般的可以认为这个数值超过 CPU 数目时,CPU 将比较吃力的负载当前系统所包含的进程;

  第二行(Tasks):

    “59 total”为当前系统进程总数;

    “1 running”为当前运行中的进程数;

    “58 sleeping”为当前处于等待状态中的进程数;

    “0 stoped”为被停止的系统进程数;

    “0 zombie”为被复原的进程数;

  第三行(Cpus):

    分别表示了 CPU 当前的使用率;

  第四行(Mem):

    分别表示了内存总量、当前使用量、空闲内存量、以及缓冲使用中的内存量;

  第五行(Swap):

    表示类别同第四行(Mem),但此处反映着交换分区(Swap)的使用情况。通常,交换分区(Swap)被频繁使用的情况,将被视作物理内存不足而造成的。

  第二部分 -- 中间部分的内部命令提示栏:

  top 运行中可以通过 top 的内部命令对进程的显示方式进行控制。内部命令如下表:

  s

  - 改变画面更新频率

  l - 关闭或开启第一部分第一行 top 信息的表示

  t - 关闭或开启第一部分第二行 Tasks 和第三行 Cpus 信息的表示

  m - 关闭或开启第一部分第四行 Mem 和 第五行 Swap 信息的表示

  N - 以 PID 的大小的顺序排列表示进程列表(第三部分后述)

  P - 以 CPU 占用率大小的顺序排列进程列表 (第三部分后述)

  M - 以内存占用率大小的顺序排列进程列表 (第三部分后述)

  h - 显示帮助

  n - 设置在进程列表所显示进程的数量

  q - 退出 top

  s -

  改变画面更新周期

  第三部分 -- 最下部分的进程列表栏:

  以 PID 区分的进程列表将根据所设定的画面更新时间定期的更新。通过 top 内部命令可以控制此处的显示方式

pmap

可以根据进程查看进程相关信息占用的内存情况,(进程号可以通过ps查看)如下所示:
  $ pmap -d 5647

ps

  如下例所示:
  $ ps -e -o ‘pid,comm,args,pcpu,rsz,vsz,stime,user,uid‘  其中rsz是是实际内存
  $ ps -e -o ‘pid,comm,args,pcpu,rsz,vsz,stime,user,uid‘ | grep oracle |  sort -nrk

  其中rsz为实际内存,上例实现按内存排序,由大到小

在Linux下查看内存我们一般用free命令:
[[email protected] tmp]# free
             total       used       free     shared    buffers     cached
Mem:       3266180    3250004      16176          0     110652    2668236
-/+ buffers/cache:     471116    2795064
Swap:      2048276      80160    1968116

下面是对这些数值的解释:
total:总计物理内存的大小。
used:已使用多大。
free:可用有多少。
Shared:多个进程共享的内存总额。
Buffers/cached:磁盘缓存的大小。
第三行(-/+ buffers/cached):
used:已使用多大。
free:可用有多少。
第四行就不多解释了。
区别:第二行(mem)的used/free与第三行(-/+ buffers/cache) used/free的区别。 这两个的区别在于使用的角度来看,第一行是从OS的角度来看,因为对于OS,buffers/cached 都是属于被使用,所以他的可用内存是16176KB,已用内存是3250004KB,其中包括,内核(OS)使用+Application(X, oracle,etc)使用的+buffers+cached.
第三行所指的是从应用程序角度来看,对于应用程序来说,buffers/cached 是等于可用的,因为buffer/cached是为了提高文件读取的性能,当应用程序需在用到内存的时候,buffer/cached会很快地被回收。
所以从应用程序的角度来说,可用内存=系统free memory+buffers+cached。
如上例:
2795064=16176+110652+2668236

接下来解释什么时候内存会被交换,以及按什么方交换。 当可用内存少于额定值的时候,就会开会进行交换。
如何看额定值:
cat /proc/meminfo

[[email protected] tmp]# cat /proc/meminfo
MemTotal:      3266180 kB
MemFree:         17456 kB
Buffers:        111328 kB
Cached:        2664024 kB
SwapCached:          0 kB
Active:         467236 kB
Inactive:      2644928 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:      3266180 kB
LowFree:         17456 kB
SwapTotal:     2048276 kB
SwapFree:      1968116 kB
Dirty:               8 kB
Writeback:           0 kB
Mapped:         345360 kB
Slab:           112344 kB
Committed_AS:   535292 kB
PageTables:       2340 kB
VmallocTotal: 536870911 kB
VmallocUsed:    272696 kB
VmallocChunk: 536598175 kB
HugePages_Total:     0
HugePages_Free:      0
Hugepagesize:     2048 kB

用free -m查看的结果:
[[email protected] tmp]# free -m 
             total       used       free     shared    buffers     cached
Mem:          3189       3173         16          0        107       2605
-/+ buffers/cache:        460       2729
Swap:         2000         78       1921

查看/proc/kcore文件的大小(内存镜像):
[[email protected] tmp]# ll -h /proc/kcore 
-r-------- 1 root root 4.1G Jun 12 12:04 /proc/kcore

备注:

占用内存的测量

测量一个进程占用了多少内存,linux为我们提供了一个很方便的方法,/proc目录为我们提供了所有的信息,实际上top等工具也通过这里来获取相应的信息。

/proc/meminfo 机器的内存使用信息

/proc/pid/maps pid为进程号,显示当前进程所占用的虚拟地址。

/proc/pid/statm 进程所占用的内存

[[email protected] ~]# cat /proc/self/statm

654 57 44 0 0 334 0

输出解释

CPU 以及CPU0。。。的每行的每个参数意思(以第一行为例)为:

参数 解释 /proc//status

Size (pages) 任务虚拟地址空间的大小 VmSize/4

Resident(pages) 应用程序正在使用的物理内存的大小 VmRSS/4

Shared(pages) 共享页数 0

Trs(pages) 程序所拥有的可执行虚拟内存的大小 VmExe/4

Lrs(pages) 被映像到任务的虚拟内存空间的库的大小 VmLib/4

Drs(pages) 程序数据段和用户态的栈的大小 (VmData+ VmStk )4

dt(pages) 04

查看机器可用内存

/proc/28248/>free

total used free shared buffers cached

Mem: 1023788 926400 97388 0 134668 503688

-/+ buffers/cache: 288044 735744

Swap: 1959920 89608 1870312

我们通过free命令查看机器空闲内存时,会发现free的值很小。这主要是因为,在linux中有这么一种思想,内存不用白不用,因此它尽可能的cache和buffer一些数据,以方便下次使用。但实际上这些内存也是可以立刻拿来使用的。

所以 空闲内存=free+buffers+cached=total-used

top命令 是Linux下常用的性能 分析工具 ,能够实时显示系统 中各个进程的资源占用状况,类似于Windows的任务管理 器。下面详细介绍它的使用方法。

top - 02:53:32 up 16 days,  6:34, 17 users,  load average: 0.24, 0.21, 0.24
Tasks: 481 total,   3 running, 474 sleeping,   0 stopped,   4 zombie
Cpu(s): 10.3%us,  1.8%sy,  0.0%ni, 86.6%id,  0.5%wa,  0.2%hi,  0.6%si,  0.0%st
Mem:   4042764k total,  4001096k used,    41668k free,   383536k buffers
Swap:  2104472k total,     7900k used,  2096572k free,  1557040k cached

PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND
32497 jacky     20   0  669m 222m  31m R   10  5.6       29:27.62 firefox
 4788 yiuwing   20   0  257m  18m  13m S    5  0.5          5:42.44 konsole
 5657 Liuxiaof  20   0  585m 159m  30m S    4  4.0          5:25.06 firefox
 4455 xiefc      20   0  542m  124m  30m R    4  3.1         7:23.03 firefox
 6188 Liuxiaof  20   0  191m   17m  13m S    4  0.5          0:01.16 konsole

统计信息区前五行是系统整体的统计信息。第一行是任务队列信息,同 uptime  命令的执行结果。其内容如下:

01:06:48  当前时间  
up 1:22  系统运行 时间,格式为时:分  
1 user  当前登录用户 数  
load average: 0.06, 0.60, 0.48  系统负载 ,即任务队列的平均长度。
            三个数值分别为  1分钟、5分钟、15分钟前到现在的平均值。

第二、三行为进程和CPU的信息。当有多个CPU时,这些内容可能会超过两行。内容如下:

Tasks: 29 total  进程总数  
1 running  正在运行的进程数  
28 sleeping  睡眠的进程数  
0 stopped  停止的进程数  
0 zombie  僵尸进程数  
Cpu(s): 0.3% us  用户空间占用CPU百分比  
1.0% sy  内核 空间占用CPU百分比  
0.0% ni  用户进程空间内改变过优先级的进程占用CPU百分比  
98.7% id  空闲CPU百分比  
0.0% wa  等待输入输出的CPU时间百分比  
0.0% hi     
0.0% si

最后两行为内存 信息。内容如下:

Mem: 191272k total  物理内存总量  
173656k used  使用的物理内存总量  
17616k free  空闲内存总量  
22052k buffers  用作内核缓存 的内存量  
Swap: 192772k total  交换区总量  
0k used  使用的交换区总量  
192772k free  空闲交换区总量  
123988k cached  缓冲的交换区总量。
            内存中的内容被换出到交换区,而后又被换入到内存,但使用过的交换区尚未被覆盖,
            该数值即为这些内容已存在于内存中 的交换区的大小。
            相应的内存再次被换出时可不必再对交换区写入。

进程信息区统计信息区域的下方显示了各个进程的详细信息。首先来认识一下各列的含义。

序号  列名  含义  
a  PID  进程id  
b  PPID  父进程id  
c  RUSER  Real user name  
d  UID  进程所有者的用户id  
e  USER  进程所有者的用户名  
f  GROUP  进程所有者的组名  
g  TTY  启动进程的终端名。不是从终端启动的进程则显示为 ?  
h  PR  优先级  
i  NI  nice值。负值表示高优先级,正值表示低优先级  
j  P  最后使用的CPU,仅在多CPU环境 下有意义  
k  %CPU  上次更新到现在的CPU时间占用百分比  
l  TIME  进程使用的CPU时间总计,单位秒  
m  TIME+  进程使用的CPU时间总计,单位1/100秒  
n  %MEM  进程使用的物理内存 百分比  
o  VIRT  进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES  
p  SWAP  进程使用的虚拟内存中,被换出的大小,单位kb。  
q  RES  进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA  
r  CODE  可执行代码占用的物理 内存大小,单位kb  
s  DATA  可执行代码以外的部分(数据 段+栈)占用的物理 内存大小,单位kb  
t  SHR  共享内存大小,单位kb  
u  nFLT  页面错误次数  
v  nDRT  最后一次写入到现在,被修改过的页面数。  
w  S  进程状态。
            D =不可中断的睡眠状态
            R =运行
            S =睡眠
            T =跟踪/停止
            Z =僵尸进程  
x  COMMAND  命令名/命令行  
y  WCHAN  若该进程在睡眠,则显示睡眠中的系统函数名  
z  Flags  任务标志,参考 sched.h

默认情况下仅显示比较重要的  PID、USER、PR、NI、VIRT、RES、SHR、S、%CPU、%MEM、TIME+、COMMAND  列。可以通过下面的快捷键来更改显示内容。
更改显示内容通过 f 键可以选择显示的内容。按 f 键之后会显示列的列表,按 a-z  即可显示或隐藏对应的列,最后按回车键确定。
按 o 键可以改变列的显示顺序。按小写的 a-z 可以将相应的列向右移动,而大写的 A-Z  可以将相应的列向左移动。最后按回车键确定。
按大写的 F 或 O 键,然后按 a-z 可以将进程按照相应的列进行排序。而大写的  R 键可以将当前的排序倒转。

==============================

top命令使用过程中,还可以使用一些交互的命令来完成其它参数的功能。这些命令是通过快捷键启动的。
<空格>:立刻刷新。
P:根据CPU使用大小进行排序。
T:根据时间、累计时间排序。
q:退出top命令。
m:切换显示内存信息。
t:切换显示进程和CPU状态信息。
c:切换显示命令名称和完整命令行。
M:根据使用内存大小进行排序。
W:将当前设置写入~/.toprc文件中。这是写top配置文件的推荐方法。

可以看到,top命令是一个功能十分强大的监控系统的工具,对于系统管理员而言尤其重要。但是,它的缺点是会消耗很多系统资源。

应用实例 
使用top命令可以监视指定用户,缺省情况是监视所有用户的进程。如果想查看指定用户的情况,在终端中按“U”键,然后输入用户名,系统就会切换为指定用户的进程运行界面。
a.作用
free命令用来显示内存的使用情况,使用权限是所有用户。
b.格式
free [-b -k -m] [-o] [-s delay] [-t] [-V]
c.主要参数
-b -k -m:分别以字节(KB、MB)为单位显示内存使用情况。
-s delay:显示每隔多少秒数来显示一次内存使用情况。
-t:显示内存总和列。
-o:不显示缓冲区调节列。
d.应用实例
free命令是用来查看内存使用情况的主要命令。和top命令相比,它的优点是使用简单,并且只占用很少的系统资源。通过-S参数可以使用free命令不间断地监视有多少内存在使用,这样可以把它当作一个方便实时监控器。
#free -b -s5
使用这个命令后终端会连续不断地报告内存使用情况(以字节为单位),每5秒更新一次。

时间: 2024-07-29 10:34:34

转载:linux内存管理的相关文章

[转载] Linux内存管理之mmap详解

转载自http://blog.chinaunix.net/uid-26669729-id-3077015.html 一. mmap系统调用 1. mmap系统调用 mmap将一个文件或者其它对象映射进内存.文件被映射到多个页上,如果文件的大小不是所有页的大小之和,最后一个页不被使用的空间将会清零.munmap执行相反的操作,删除特定地址区域的对象映射. 当使用mmap映射文件到进程后,就可以直接操作这段虚拟地址进行文件的读写等操作,不必再调用read,write等系统调用.但需注意,直接对该段内

linux内存管理---物理地址、线性地址、虚拟地址、逻辑地址之间的转换

linux内存管理---虚拟地址.逻辑地址.线性地址.物理地址的区别(一) 这篇文章中介绍了四个名词的概念,下面针对四个地址的转换进行分析 CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步(如下图): 首先,将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址, 其次,再利用其页式内存管理单元,转换为最终物理地址. 这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程.之所以这样冗余

linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一)

分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 逻辑地址(Logical Address) 包含在机器语言指令中用来指定一个操作数或一条指令的地址(有点深奥).这种寻址方式在80x86著名的分段结构中表现得尤为具体,它促使windows程序员把程序分成若干段.每个逻辑地址都由一个段和偏移量组成,偏移量指明了从段开始的地方到实际地址之间的距离. 线性地址(

转 Linux内存管理原理

Linux内存管理原理 在用户态,内核态逻辑地址专指下文说的线性偏移前的地址Linux内核虚拟3.伙伴算法和slab分配器 16个页面RAM因为最大连续内存大小为16个页面 页面最多16个页面,所以16/2order(0)bimap有8个bit位两个页框page1 与page2组成与两个页框page3 与page4组成,这两个块之间有一个bit位 order(1)bimap有4个bit位order(2)bimap有4个bit位的2个页面分配过程 当我们需要order(1)的空闲页面块时,orde

Windows内存管理和linux内存管理

windows内存管理 windows 内存管理方式主要分为:页式管理,段式管理,段页式管理. 页式管理的基本原理是将各进程的虚拟空间划分为若干个长度相等的页:页式管理把内存空间按照页的大小划分成片或者页面,然后把页式虚拟地址与内存地址建立一一对应的页表:并用相应的硬件地址变换机构来解决离散地址变换问题.页式管理采用请求调页或预调页技术来实现内外存存储器的统一管理.其优点是没有外碎片,每个内碎片不超过页的大小.缺点是,程序全部装入内存,要求有相应的硬件支持.例如地址变换机构缺页中断的产生和选择淘

[转帖]Linux分页机制之分页机制的演变--Linux内存管理(七)

Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatieme/article/details/52402967 ~ 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme https://blog.csdn.net/gatieme/article/details/52402967 日期 内核版

linux内存管理

一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分:    1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程序可调用它.假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一个代码段.     2) 数据段:存放已初始化的全局变量.静态变量(包括全局和局部的).常量.static全局变量和static函数只能在当前文件中被调用.     3) 未初始化数据区(uninitializeddata s

Linux内存管理机制

一.首先大概了解一下计算机CPU.Cache.内存.硬盘之间的关系及区别. 1.  CPU也称为中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路, 是一台计算机的运算核心(Core)和控制核心( Control Unit).它的功能主要是解释计算机指令以及处理计算机软件中的数据.中央处理器主要由三核心部件组成,运算器.控制器和总线(BUS),运算器又主要由算术逻辑单元(ALU)和寄存器(RS)组成. 2.Cache即高速缓冲存储器,是位于CPU与主内存

Linux内存管理 【转】

转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书

linux内存管理浅析

[地址映射](图:左中)linux内核使用页式内存管理,应用程序给出的内存地址是虚拟地址,它需要经过若干级页表一级一级的变换,才变成真正的物理地址.想一下,地址映射还是一件很恐怖的事情.当访问一个由虚拟地址表示的内存空间时,需要先经过若干次的内存访问,得到每一级页表中用于转换的页表项(页表是存放在内存里面的),才能完成映射.也就是说,要实现一次内存访问,实际上内存被访问了N+1次(N=页表级数),并且还需要做N次加法运算.所以,地址映射必须要有硬件支持,mmu(内存管理单元)就是这个硬件.并且需