字符设备驱动范例

模拟一个虚拟寄存器设备驱动

1.编写驱动

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/uaccess.h>

int dev1_registers[5];
int dev2_registers[5];

struct cdev cdev;
dev_t devno;

/*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{

/*获取次设备号*/
int num = MINOR(inode->i_rdev);

if (num==0)
filp->private_data = dev1_registers;
else if(num == 1)
filp->private_data = dev2_registers;
else
return -ENODEV; //无效的次设备号

return 0;
}

/*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
return 0;
}

/*读函数*/
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
int *register_addr = filp->private_data; /*获取设备的寄存器基地址*/

/*判断读位置是否有效*/
if (p >= 5*sizeof(int))
return 0;
if (count > 5*sizeof(int) - p)
count = 5*sizeof(int) - p;

/*读数据到用户空间*/
if (copy_to_user(buf, register_addr+p, count))
{
ret = -EFAULT;
}
else
{
*ppos += count;
ret = count;
}

return ret;
}

/*写函数*/
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
int *register_addr = filp->private_data; /*获取设备的寄存器地址*/

/*分析和获取有效的写长度*/
if (p >= 5*sizeof(int))
return 0;
if (count > 5*sizeof(int) - p)
count = 5*sizeof(int) - p;

/*从用户空间写入数据*/
if (copy_from_user(register_addr + p, buf, count))
ret = -EFAULT;
else
{
*ppos += count;
ret = count;
}

return ret;
}

/* seek文件定位函数 */
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos;

switch(whence) {
case SEEK_SET:
newpos = offset;
break;

case SEEK_CUR:
newpos = filp->f_pos + offset;
break;

case SEEK_END:
newpos = 5*sizeof(int)-1 + offset;
break;

default:
return -EINVAL;
}
if ((newpos<0) || (newpos>5*sizeof(int)))
return -EINVAL;

filp->f_pos = newpos;
return newpos;

}

/*文件操作结构体*/
static const struct file_operations mem_fops =
{
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
};

/*设备驱动模块加载函数*/
static int memdev_init(void)
{
/*初始化cdev结构*/
cdev_init(&cdev, &mem_fops);

/* 注册字符设备 */
alloc_chrdev_region(&devno, 0, 2, "memdev");
cdev_add(&cdev, devno, 2);
}

/*模块卸载函数*/
static void memdev_exit(void)
{
cdev_del(&cdev); /*注销设备*/
unregister_chrdev_region(devno, 2); /*释放设备号*/
}

MODULE_LICENSE("GPL");

module_init(memdev_init);
module_exit(memdev_exit);

2.创建设备文件,首先查看开发板上文件系统中的设备编号

cat /proc/devices 找到memdev 的设备编号,我这里是252

mknod dev/memdev0 c 252 0

3.编写write.c文件

vim write.c
#include<stdio.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
int main()
{
int fd =0;//
int src = 2013;
fd=open("/dev/memdev0",O_RDWR);//以可读可写的方式打开文件,打开之

后会返回一个fd,
write(fd,&src,sizeof(int));向文件中写入数据,首先写入fd,然后写入

数据,数据的大小。
close(fd);
}

4.编写读取数据read.c文件

vim read_mem.c
#include<stdio.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
int main()
{
int fd =0;
int dst=0;
fd = open("/dev/memdev0",O_RDWR);
read (fd,&dst,sizeof(int));
printf("dst is %d\n",dst);
return 0;
}

5.编写makefile

这里就省略,很简单。

make

arm-linux-gcc -static write.c -o write

arm-linux-gcc -static read.c -o read

6.将编译好的模块,以及write read 拷贝到nfs文件系统中

安装内核模块 insmod memdev.ko

./write

./read

时间: 2024-10-11 12:34:36

字符设备驱动范例的相关文章

register_chrdev_region/alloc_chrdev_region和cdev注册字符设备驱动

内核提供了三个函数来注册一组字符设备编号,这三个函数分别是 register_chrdev_region().alloc_chrdev_region() 和 register_chrdev(). (1)register_chrdev  比较老的内核注册的形式   早期的驱动(2)register_chrdev_region/alloc_chrdev_region + cdev  新的驱动形式 (3)register_chrdev()函数是老版本里面的设备号注册函数,可以实现静态和动态注册两种方法

linux字符设备驱动

一.字符设备.字符设备驱动与用户空间访问该设备的程序三者之间的关系. 如图,在Linux内核中使用cdev结构体来描述字符设备,通过其成员dev_t来定义设备号(分为主.次设备号)以确定字符设备的唯一性.通过其成员file_operations来定义字符设备驱动提供给VFS的接口函数,如常见的open().read().write()等. 在Linux字符设备驱动中,模块加载函数通过register_chrdev_region( ) 或alloc_chrdev_region( )来静态或者动态获

linux 字符设备驱动开发详解

一.设备的分类及特点 1.字符设备 字符设备是面向数据流的设备,没有请求缓冲区,对设备的存取只能按顺序按字节的存取而不能随机访问.    Linux下的大多设备都是字符设备.应用程序是通过字符设备节点来访问字符设备的.通常至少需要实现 open, close, read, 和 write 等系统调用.    设备节点一般都由mknod命令都创建在/dev目录下,包含了设备的类型.主/次设备号以及设备的访问权限控制等,如:crw-rw----  1 root  root 4, 64 Feb 18

linux设备驱动第三篇:写一个简单的字符设备驱动

在linux设备驱动第一篇:设备驱动程序简介中简单介绍了字符驱动,本篇简单介绍如何写一个简单的字符设备驱动.本篇借鉴LDD中的源码,实现一个与硬件设备无关的字符设备驱动,仅仅操作从内核中分配的一些内存. 下面就开始学习如何写一个简单的字符设备驱动.首先我们来分解一下字符设备驱动都有那些结构或者方法组成,也就是说实现一个可以使用的字符设备驱动我们必须做些什么工作. 1.主设备号和次设备号 对于字符设备的访问是通过文件系统中的设备名称进行的.他们通常位于/dev目录下.如下: [plain] vie

13、字符设备驱动的使用

编译和安装驱动 下面是通过一个例子来学会使用驱动程序: 1---驱动程序: Memdev.c #include <linux/module.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/cdev.h> #include <asm/uaccess.h> int dev1_registers[5]; int dev2_registers[5]; struct cdev

linux设备驱动之字符设备驱动模型(2)

在上一篇中我们已经了解了字符设备驱动的原理,也了解了应用层调用内核函数的机制,但是我们每次操作设备,都必须首先通过mknod命令创建一个设备文件名,比如说我们要打开u盘,硬盘等这些设备,难道我们还要自己创建,就如同刘老师常说的一句话,这也太山寨了吧,所以我们今天我们来点比较专业的,让函数帮我们自动创建: 在Linux 下,设备和驱动通常都需要挂接在一种总线上,总线有PCI.USB.I2C.SPI 等等,总线是处理器和设备之间的通道,在设备模型中,所有的设备都通过总线相连,一总线来管理设备和驱动函

字符设备驱动模型

1.设备描述结构cdev驱动模型种类繁多,这就需要我从众多的模型中提取出他们的一些共性:a.驱动初始化a.1 分配设备描述结构a.2 初始化设备描述结构a.3 注册设备描述结构a.4 硬件初始化b.实现设备操作c.驱动注销 ------------------------------------------------------------------ 设备描述结构:在任何一种驱动模型中,设备都会用的内核中的一种结构来描述,我们的字符设备在内核中使用struct cdev 来来描述.struc

Linux字符设备驱动剖析

一.先看看设备应用程序 1.很简单,open设备文件,read.write.ioctl,最后close退出.如下: intmain(int argc ,char *argv[]){ unsigned char val[1] = 1; int fd =open("/dev/LED",O_RDWR);//打开设备 write(fd,val,1);//写入设备,这里代表LED全亮 close(fd);//关闭设备 return 0; } 二./dev目录与文件系统 2./dev是根文件系统下

字符设备驱动框架

scull from <Linux设备驱动程序> memdev.c /* * memdev.c * create at 2015/01/07 * 字符设备驱动程序框架 */ #include <linux/module.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/errno.h> #include <linux/mm.h> #include <