洛谷 P1066 2^k进制数

P1066 2^k进制数

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入输出格式

输入格式:

输入只有1行,为两个正整数,用一个空格隔开:

k W

输出格式:

输出为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

输入输出样例

输入样例#1:

3 7

输出样例#1:

36

说明

NOIP 2006 提高组 第四题

时间: 2024-11-15 00:12:07

洛谷 P1066 2^k进制数的相关文章

[NOIP2006] 提高组 洛谷P1066 2^k进制数

题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为

P1066 2^k进制数

P1066 2^k进制数 204通过 373提交 题目提供者洛谷OnlineJudge 标签数论(数学相关)高精NOIp提高组2006 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤

[luogu]P1066 2^k进制数[数学][递推][高精度]

[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q

1813. M进制数问题

1813. M进制数问题 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 试用 C++的类来表示一般进制数. 给定 2 个n位m进制整数A和B,计算m进制数整数P = A / B (向下取整)与 Q = A % B的值. Input 输入包含多个测试点.第一行为一个整数T,表示测试点数. 对于每个测试点第 1 行是进制 m .第 2 行和第 3 行分别给出 m 进制整数 A 和 B. 所有 m 进制数的10进制表示均

2^k进制数

[题目描述] 设R是个2^k进制数,并满足以下条件: (1)R至少是个2位的2^k进制数: (2)作为2^k进制数,除最后一位外,R的每一位严格小于它右边相邻的那一位: (3)将R转换为2进制数q后,则q的总位数不超过w: 在这里,正整数k(1 ≤ k ≤ 9)和w(k < w ≤30000)是事先给定的. 询问满足上述条件的不同的r共有多少个. 我们再从另一角度作些解释: 设S是长度为w的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为若干个长度

javascript将10进制数转换为2进制

javascript中将10进制数转换为2进制有两种方式 一种是直接用toString(2)这个方法,一种是自己写一个方法换算,以下是代码: var num = 11; var str = num.toString(2); /*将十进制数转变为二进制数*/ function dec2bin(num){ var result = ""; if(num == 0){ return "0"; } while(num > 0){ result = num % 2 +

用Python内置函数轻松实现各种进制数之间的转换

0.说明 9个月没有写过Python了,这9个月都在华为的ICT知识海洋里遨游,前段时间刚刚通过了HCIE的认证,想着还是喜欢Python和Linux多些,所以又回来了,后面会有越来越多的Python干货分享给大家,比如后面会打算写一个完整的Linux主机监控项目的教程给初入门的朋友,相信这会是非常不错的体验. 那段时间,曾经有些时候,我需要对各种进制进行转换,因为虽然那会不写Python了,但是还是用Python自带的解释器用来做简单的数学计算,很方便. 在网上找,看有没有方法可以实现各种进制

codevs 1157 2k进制数

1157 2k进制数 2006年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有

2k进制数(codevs 1157)

题目描述 Description 设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S