BZOJ 4827 [Hnoi2017]礼物 ——FFT

题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了。

然后考虑计算的式子,可以分成两个部分分开计算。

前半部分FFT,后半部分扫一遍。

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define double long double
#define llinf 10000000000000000LL
#define maxn 500005
#define eps 1e-6

struct Complex{
    double x,y;
    Complex (){}
    Complex (double _x,double _y){x=_x;y=_y;}
    Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);}
    Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);}
    Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);}
}A[maxn],B[maxn];

const double pi=acos(-1.0);
int rev[maxn];
ll ans=llinf,res[maxn],sumA2=0,sumB2=0,sumA=0,sumB=0;

void FFT(Complex *x,int n,int flag)
{
    F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
    for (int m=2;m<=n;m<<=1)
    {
        Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m));
        for (int i=0;i<n;i+=m)
        {
            Complex w=Complex(1.0,0);
            for (int j=0;j<(m>>1);++j)
            {
                Complex u=x[i+j],v=x[i+j+(m>>1)]*w;
                x[i+j]=u+v;x[i+j+(m>>1)]=u-v;
                w=w*wn;
            }
        }
    }
}

int n,m,L=0;

int main()
{
    scanf("%d%d",&n,&m);
    F(i,0,n-1)
    {
        int x;scanf("%d",&x);
        A[i].x=x;
        sumA+=x;
        sumA2+=(ll)x*x;
    }
    D(i,n-1,0)
    {
        int x;scanf("%d",&x);
        B[i].x=x;
        sumB+=x;
        sumB2+=(ll)x*x;
        B[i+n].x=B[i].x;
    }
    for(m=1;m<=4*n;m<<=1);while(!(m>>L&1))L++;
    F(i,0,m-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1));
    FFT(A,m,1);FFT(B,m,1);F(i,0,m-1)A[i]=A[i]*B[i];FFT(A,m,-1);
    F(i,0,m-1) res[i]=(A[i].x+0.4)/m;
    F(i,-100,100)
    {
        ll tmp=2*i*(sumA-sumB)+n*i*i;
        F(j,n-1,2*n-1) ans=min(ans,sumA2+sumB2+tmp);
    }
    ll tmp=-llinf;
    F(i,n-1,2*n-1) tmp=max(tmp,res[i]);
    ans-=2*tmp;
    printf("%lld\n",ans);
}

  

时间: 2024-10-30 09:30:12

BZOJ 4827 [Hnoi2017]礼物 ——FFT的相关文章

bzoj 4827: [HNOI2017]礼物 (FFT)

一道FFT 然而据说暴力可以水70分 然而我省选的时候看到了直接吓傻了  连暴力都没打 太弱了啊QAQ emmmm 详细的拆开就看其他题解吧233 最后那一步卷积其实我一直没明白 后来画画图终于懂了 只要把其中一个反过来 多项式乘法的结果中的每一项系数就对应某一个Σx[i] * y[j] 的结果 前面几项是不完全的结果 但是太小了就被忽略啦 代码如下 /************************************************************** Problem:

[BZOJ 4827][Hnoi2017]礼物(FFT)

Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过

【bzoj4827】[Hnoi2017]礼物 FFT

题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转

BZOJ4827: [Hnoi2017]礼物

4827: [Hnoi2017]礼物 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 474  Solved: 334[Submit][Status][Discuss] Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了

bzoj 4827 礼物

bzoj 4827 礼物 可以看做将其中一个数列(假定为 \(a\) )都加上 \(c\) , \(c\) 可以为负数.易知这里 \(-m\leq c\leq m\). 记要求的答案为 \(ans\) , 大力拆开括号可得: \[ ans=\sum{(a_i+c-b_i)^2}\\=\sum a_i^2+\sum b_i^2+n\cdot c^2+2c\cdot (\sum a_i-\sum b_i)-2\sum a_i b_i. \] 这里的 \(a,b\) 是原数列元素不变,通过旋转得到的.

BZOJ4827 [Hnoi2017]礼物 多项式 FFT

原文链接http://www.cnblogs.com/zhouzhendong/p/8823962.html 题目传送门 - BZOJ4827 题意 有两个长为$n$的序列$x$和$y$,序列$x,y$的第$i$项分别是$x_i,y_i$. 选择一个序列$A$,现在你可以对它进行如下两种操作: $1.$ 得到一个和$A$循环同构的序列$A'$. $2.$ 给所有的$A'_i$都加上$c(c\in N^+)$,得到序列$A''$. 你进行上面两个操作之后,得到的序列分别为$x'',y''$(注意$

[AHOI2017/HNOI2017][bzoj4827] 礼物 [FFT]

题面 传送门 思路 首先,有一个结论:两个手环增加非负整数亮度,等于其中一个增加一个整数亮度(可以为负) 我们令增加量为$x$,旋转以后的原数列为${a}{b}$那么现在的费用就是: $\sum_{i=1}^n\left(a_i+x-b_i\right)^2$ 我们把第i项拿出来拆开,得到: $\left(a_i+x-b_i\right)^2=a_i^2+b_i^2+x^2+2a_ix-2a_ib_i-2b_ix$ 那么原式变成了 $\sum_{i=1}^na_i^2+\sum_{i=1}^nb

[bzoj4827][Hnoi2017]礼物_FFT

礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我也可以将第一个手环任意旋转.旋转后每一个$x$对应一个$y$,那么代价为$\sum\limits_{i=0}^{n-1} (x_i-y_i)^2$.求最小代价. 注释:$1\le n\le 10^5$,$0\le maxval \le 100$. 想法: 水题啊..... 推推式子,我们假设就加了$

HNOI2017礼物

礼物 这估计是最水,最无脑的一道题了 首先发现总和最接近时答案最小 发现答案就是\((\sum_{i=1}^{n}a[i]^2+b[i]^2)-2*max(\sum_{i=1}^{n}a[i]*b[i+j])(0<=j<=n-1)\) 前面随便算,主要是后面那个式子,其实就是两个数列错位相乘加起来最大值 把\(b\)反过来就变成\(\sum_{i=1}^{n}a[i]*b[n-i-j])(0<=j<=n-1)\),直接就多项式卷积,FFT一算就行了. // luogu-judger