图像的角点简介

角点检测(Corner Detection)是计算机视觉系统中用来获得图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维建模和目标识别等领域中。也称为特征点检测。 角点通常被定义为两条边的交点,更严格的说,角点的局部邻域应该具有两个不同区域的不同方向的边界。而实际应用中,大多数所谓的角点检测方法检测的是拥有特定特征的图像点,而不仅仅是“角点”。这些特征点在图像中有具体的坐标,并具有某些数学特征,如局部最大或最小灰度、某些梯度特征等。 
现有的角点检测算法并不是都十分的鲁棒。很多方法都要求有大量的训练集和冗余数据来防止或减少错误特征的出现。角点检测方法的一个很重要的评价标准是其对多幅图像中相同或相似特征的检测能力,并且能够应对光照变化、图像旋转等图像变化。 Moravec角点检测算法 
Moravec角点检测算法是最早的角点检测算法之一。该算法将角点定义为具有低“自相关性”的点。算法会检测图像的每一个像素,将像素周边的一个邻域作为一个patch,并检测这个patch和周围其他patch的相关性。这种相关性通过两个patch间的平方差之和(SSD)来衡量,SSD值越小则相似性越高。 
如果像素位于平滑图像区域内,周围的patch都会非常相似。如果像素在边缘上,则周围的patch在与边缘正交的方向上会有很大差异,在与边缘平行的方向上则较为相似。而如果像素是各个方向上都有变化的特征点,则周围所有的patch都不会很相似。 
Moravec会计算每个像素patch和周围patch的SSD最小值作为强度值,取局部强度最大的点作为特征点。 Harris角点检测算法 
Moravec角点检测算法有几个很明显的缺陷: 
1,强度值的计算并不是各向同性的,只有离散的8个45度角方向被考虑。因为patch的评议比较最多只有8个方向; 
2,由于窗口是方形并且二元的,因此相应函数会有噪声; 3,对边缘的相应太简单,因为强度值尽取SSD的最小值;

FAST角点检测算法 
Smith 和 Brady在1997年提出了一种完全不同的角点提取方法,即“SUSAN (Smallest UnivalueSegment AssimilatingNucleus)”提取算子。SUSAN 提取算子的基本原理是,与每一图像点相关的局部区域具有相同的亮度。如果某一窗口区域内的每一像元亮度值与该窗口中心的像元亮度值相同或相似,这一窗口区域将被称之为“USAN”。计算图像每一像元的“USAN”,为我们提供了是否有边缘的方法。位于边缘上的像元的“USAN”较小,位于角点上的像元的“USAN”更小。因此,我们仅需寻找最小的“USAN”,就可确定角点。该方法由于不需要计算图像灰度差,因此,具有很强的抗噪声的能力。 
Edward Rosten and TomDrummond 在2006年提出了一种简单快速的角点探测算法,该算法检测的角点定义为在像素点的周围邻域内有足够多的像素点与该点处于不同的区域。应用到灰度图像中,即有足够多的像素点的灰度值大于该点的灰度值或者小于该点的灰度值。 考虑下图中p点附近半径为3的圆环上的16个点,一个思路是若其中有连续的12个点的灰度值与p点的灰度值差别超过某一阈值,则可以认为p点为角点。 
 
这一思路可以使用机器学习的方法进行加速。对同一类图像,例如同一场景的图像,可以在16个方向上进行训练,得到一棵决策树,从而在判定某一像素点是否为角点时,不再需要对所有方向进行检测,而只需要按照决策树指定的方向进行2-3次判定即可确定该点是否为角点。

时间: 2024-11-05 11:00:56

图像的角点简介的相关文章

[转]图像超分辨率重建简介

图像超分辨率重建技术就是利用一组低质量.低分辨率图像(或运动序列)来产生单幅高质量.高分辨率图像.图像超分辨率重建应用领域及其宽广,在军事,医学,公共安全,计算机视觉等方面都存在着重要的应用前景.在计算机视觉领域,图像超分辨率重建技术有可能使图像实现从检出水平(detection level)向识别水平(recognition level)的转化,或更进一步实现向细辨水平(identification level)的转化.图像超分辨率重建技术可以提高图像的识别能力和识别精度.图像超分辨率重建技术

【练习8.7】cvGoodFeaturesToTrack确定图像强角点、cvFindCornerSubPix亚像素级角点检测

页内索引 题目要求 程序代码 结果图片 要言妙道 借鉴参考 题目要求: 黑色背景上创建一个白色拐角,使得这个角正好在整数值的坐标上,保存用OpenCV打开 a.找出并输出拐角的确切坐标 分别改变原始图像进行如下操作 b.用白边透明填充的圆将圆角遮住 c.用白边黑色填充的圆将圆角遮住 d.用黑色圆块将圆角遮住 程序代码: 1 // OpenCVExerciseTesting.cpp : 定义控制台应用程序的入口点. 2 // 3 // string file_full_name = "D:\\Wo

Harris角点检测原理及实现

一.原理 二.实现 close all; clear all; I=imread('test.tif'); [posX,posY]=harris(I); figure;imshow(I); hold on; plot(posX, posY, 'g*'); function [posX,posY]=harris(I) %Harris角点检测 %I:输入图像 %posX:角点X坐标 %posY:角点Y坐标 I=double(I); [m,n]=size(I); hx=[-1,0,1;-1,0,1;-

视觉SLAM之RANSAC算法用于消除图像误匹配的原理

在基于特征点的视觉SLAM中,通常情况下,在特征匹配过程中往往会存在误匹配信息,使得计算获取的位姿精度低,易产生位姿估计失败的问题,因此,剔除这些错配点有很大的必要性.常会用到RANSAC算法进行消除两两匹配图像的误匹配点,如果只停留在应用的层面上很简单,直接调用opencv函数就行,看到效果时,感觉好神奇,到底怎么实现的啊,以前一直也没弄太明白,与图像结合的博客也比较少,在查阅了一些资料后,笔者似乎明白了一点,希望笔者的总结会对您的理解有帮助. 首先先介绍一下RANSAC算法(RANdom S

【opencv】鱼眼图像畸变校正——标定校正

参考: http://docs.opencv.org/3.0.0/db/d58/group__calib3d__fisheye.html#gga91b6a47d784dd47ea2c76ef656d7c3dca0899eaa2f96d6eed9927c4b4f4464e05 http://docs.opencv.org/master/modules/calib3d/doc/calib3d.html opencv2.4.9 Fisheye camera model reference Kannal

图像处理之角点检测与亚像素角点定位

角点是图像中亮度变化最强地方反映了图像的本质特征,提取图像中的角点可以有效提高图像处理速度与精准度.所以对于整张图像来说特别重要,角点检测与提取的越准确图像处理与分析结果就越接近真实.同时角点检测对真实环境下的对象识别.对象匹配都起到决定性作用.Harr角点检测是图像处理中角点提取的经典算法之一,应用范围广发,在经典的SIFT特征提取算法中Harr角点检测起到关键作用.通常对角点检测算法都有如下要求: 1. 基于灰度图像.能够自动调整运行稳定,检测出角点的数目. 2. 对噪声不敏感.有一定的噪声

第十一节、Harris角点检测原理

OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比如将许多图像放在一块,然后形成一个360度全景图像. 这里我们将学习使用OpenCV来检测图像特征,并利用这些特征进行图像匹配和搜索.我们会选取一些图像,并通过单应性,检测这些图像是否在另一张图像中. 一 特征检测算法 有许多用于特征检测和提取的算法,我们将会对其中大部分进行介绍.OpenCV最常使

图像配准----NCC

在用Harris算子对图像进行角点提取后,两幅图像得到的角点个数不一定相等,这时就要先对它们进行处理,得出一一对应的角点对. 归一化互相关(Normalized Cross Correlation method, NCC)匹配算法是一种经典的统计匹配算法,通过计算模板图像和匹配图像的互相关值,来确定匹配的程度. 互相关最大时的搜索窗口位置决定了模板图像在待匹配图像中的位置. 它是一个亮度.对比度线性不变量. 此算法的缺点是参与运算的特征点比较多,运算速度比较慢. 归一化互相关应用在对图像特征点进

Robotics Lab3 ——图像特征匹配、跟踪与相机运动估计

Robotics Lab3 --图像特征匹配.跟踪与相机运动估计 图像特征匹配 图像特征点 携带摄像头的机器人在运动过程中,会连续性地获取多帧图像,辅助其感知周围环境和自身运动.时间序列上相连的两幅或多幅图像,通常存在相同的景物,只是它们在图像中的位置不同.而位置的变换恰恰暗含了相机的运动,这时就需要相邻图像间的相似性匹配. 选取一大块图像区域进行运动估计是不可取的.已知图像在计算机内部是以数字矩阵的形式存储的,[如灰度图的每个元素代表了单个像素的灰度值].而对于点的提取和匹配较为方便,且和数字