1、前言
最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:
环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。
2、linux 内核kfifo
kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:
struct kfifo { unsigned char *buffer; /* the buffer holding the data */ unsigned int size; /* the size of the allocated buffer */ unsigned int in; /* data is added at offset (in % size) */ unsigned int out; /* data is extracted from off. (out % size) */ spinlock_t *lock; /* protects concurrent modifications */ };
kfifo提供的方法有:
1 //根据给定buffer创建一个kfifo 2 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size, 3 gfp_t gfp_mask, spinlock_t *lock); 4 //给定size分配buffer和kfifo 5 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, 6 spinlock_t *lock); 7 //释放kfifo空间 8 void kfifo_free(struct kfifo *fifo) 9 //向kfifo中添加数据 10 unsigned int kfifo_put(struct kfifo *fifo, 11 const unsigned char *buffer, unsigned int len) 12 //从kfifo中取数据 13 unsigned int kfifo_put(struct kfifo *fifo, 14 const unsigned char *buffer, unsigned int len) 15 //获取kfifo中有数据的buffer大小 16 unsigned int kfifo_len(struct kfifo *fifo)
定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:
1 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size, 2 gfp_t gfp_mask, spinlock_t *lock) 3 { 4 struct kfifo *fifo; 6 /* size must be a power of 2 */ 7 BUG_ON(!is_power_of_2(size)); 9 fifo = kmalloc(sizeof(struct kfifo), gfp_mask); 10 if (!fifo) 11 return ERR_PTR(-ENOMEM); 13 fifo->buffer = buffer; 14 fifo->size = size; 15 fifo->in = fifo->out = 0; 16 fifo->lock = lock; 17 18 return fifo; 19 } 20 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock) 21 { 22 unsigned char *buffer; 23 struct kfifo *ret; 29 if (!is_power_of_2(size)) { 30 BUG_ON(size > 0x80000000); 31 size = roundup_pow_of_two(size); 32 } 34 buffer = kmalloc(size, gfp_mask); 35 if (!buffer) 36 return ERR_PTR(-ENOMEM); 38 ret = kfifo_init(buffer, size, gfp_mask, lock); 39 40 if (IS_ERR(ret)) 41 kfree(buffer); 43 return ret; 44 }
在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)
kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:
1 static inline unsigned int kfifo_put(struct kfifo *fifo, 2 const unsigned char *buffer, unsigned int len) 3 { 4 unsigned long flags; 5 unsigned int ret; 6 spin_lock_irqsave(fifo->lock, flags); 7 ret = __kfifo_put(fifo, buffer, len); 8 spin_unlock_irqrestore(fifo->lock, flags); 9 return ret; 10 } 11 12 static inline unsigned int kfifo_get(struct kfifo *fifo, 13 unsigned char *buffer, unsigned int len) 14 { 15 unsigned long flags; 16 unsigned int ret; 17 spin_lock_irqsave(fifo->lock, flags); 18 ret = __kfifo_get(fifo, buffer, len); 19 //当fifo->in == fifo->out时,buufer为空 20 if (fifo->in == fifo->out) 21 fifo->in = fifo->out = 0; 22 spin_unlock_irqrestore(fifo->lock, flags); 23 return ret; 24 } 25 26 27 unsigned int __kfifo_put(struct kfifo *fifo, 28 const unsigned char *buffer, unsigned int len) 29 { 30 unsigned int l; 31 //buffer中空的长度 32 len = min(len, fifo->size - fifo->in + fifo->out); 34 /* 35 * Ensure that we sample the fifo->out index -before- we 36 * start putting bytes into the kfifo. 37 */ 39 smp_mb(); 41 /* first put the data starting from fifo->in to buffer end */ 42 l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); 43 memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l); 45 /* then put the rest (if any) at the beginning of the buffer */ 46 memcpy(fifo->buffer, buffer + l, len - l); 47 48 /* 49 * Ensure that we add the bytes to the kfifo -before- 50 * we update the fifo->in index. 51 */ 53 smp_wmb(); 55 fifo->in += len; //每次累加,到达最大值后溢出,自动转为0 57 return len; 58 } 59 60 unsigned int __kfifo_get(struct kfifo *fifo, 61 unsigned char *buffer, unsigned int len) 62 { 63 unsigned int l; 64 //有数据的缓冲区的长度 65 len = min(len, fifo->in - fifo->out); 67 /* 68 * Ensure that we sample the fifo->in index -before- we 69 * start removing bytes from the kfifo. 70 */ 72 smp_rmb(); 74 /* first get the data from fifo->out until the end of the buffer */ 75 l = min(len, fifo->size - (fifo->out & (fifo->size - 1))); 76 memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l); 78 /* then get the rest (if any) from the beginning of the buffer */ 79 memcpy(buffer + l, fifo->buffer, len - l); 81 /* 82 * Ensure that we remove the bytes from the kfifo -before- 83 * we update the fifo->out index. 84 */ 86 smp_mb(); 88 fifo->out += len; //每次累加,到达最大值后溢出,自动转为0 90 return len; 91 }
put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。
(1)空的kfifo,
(2)put一个buffer后
(3)get一个buffer后
(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去
3、测试程序
仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:
1 /**@brief 仿照linux kfifo写的ring buffer 2 *@atuher Anker date:2013-12-18 3 * ring_buffer.h 4 * */ 5 6 #ifndef KFIFO_HEADER_H 7 #define KFIFO_HEADER_H 8 9 #include <inttypes.h> 10 #include <string.h> 11 #include <stdlib.h> 12 #include <stdio.h> 13 #include <errno.h> 14 #include <assert.h> 15 16 //判断x是否是2的次方 17 #define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0)) 18 //取a和b中最小值 19 #define min(a, b) (((a) < (b)) ? (a) : (b)) 20 21 struct ring_buffer 22 { 23 void *buffer; //缓冲区 24 uint32_t size; //大小 25 uint32_t in; //入口位置 26 uint32_t out; //出口位置 27 pthread_mutex_t *f_lock; //互斥锁 28 }; 29 //初始化缓冲区 30 struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock) 31 { 32 assert(buffer); 33 struct ring_buffer *ring_buf = NULL; 34 if (!is_power_of_2(size)) 35 { 36 fprintf(stderr,"size must be power of 2.\n"); 37 return ring_buf; 38 } 39 ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer)); 40 if (!ring_buf) 41 { 42 fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s", 43 errno, strerror(errno)); 44 return ring_buf; 45 } 46 memset(ring_buf, 0, sizeof(struct ring_buffer)); 47 ring_buf->buffer = buffer; 48 ring_buf->size = size; 49 ring_buf->in = 0; 50 ring_buf->out = 0; 51 ring_buf->f_lock = f_lock; 52 return ring_buf; 53 } 54 //释放缓冲区 55 void ring_buffer_free(struct ring_buffer *ring_buf) 56 { 57 if (ring_buf) 58 { 59 if (ring_buf->buffer) 60 { 61 free(ring_buf->buffer); 62 ring_buf->buffer = NULL; 63 } 64 free(ring_buf); 65 ring_buf = NULL; 66 } 67 } 68 69 //缓冲区的长度 70 uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf) 71 { 72 return (ring_buf->in - ring_buf->out); 73 } 74 75 //从缓冲区中取数据 76 uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size) 77 { 78 assert(ring_buf || buffer); 79 uint32_t len = 0; 80 size = min(size, ring_buf->in - ring_buf->out); 81 /* first get the data from fifo->out until the end of the buffer */ 82 len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1))); 83 memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len); 84 /* then get the rest (if any) from the beginning of the buffer */ 85 memcpy(buffer + len, ring_buf->buffer, size - len); 86 ring_buf->out += size; 87 return size; 88 } 89 //向缓冲区中存放数据 90 uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 91 { 92 assert(ring_buf || buffer); 93 uint32_t len = 0; 94 size = min(size, ring_buf->size - ring_buf->in + ring_buf->out); 95 /* first put the data starting from fifo->in to buffer end */ 96 len = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1))); 97 memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len); 98 /* then put the rest (if any) at the beginning of the buffer */ 99 memcpy(ring_buf->buffer, buffer + len, size - len); 100 ring_buf->in += size; 101 return size; 102 } 103 104 uint32_t ring_buffer_len(const struct ring_buffer *ring_buf) 105 { 106 uint32_t len = 0; 107 pthread_mutex_lock(ring_buf->f_lock); 108 len = __ring_buffer_len(ring_buf); 109 pthread_mutex_unlock(ring_buf->f_lock); 110 return len; 111 } 112 113 uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 114 { 115 uint32_t ret; 116 pthread_mutex_lock(ring_buf->f_lock); 117 ret = __ring_buffer_get(ring_buf, buffer, size); 118 //buffer中没有数据 119 if (ring_buf->in == ring_buf->out) 120 ring_buf->in = ring_buf->out = 0; 121 pthread_mutex_unlock(ring_buf->f_lock); 122 return ret; 123 } 124 125 uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size) 126 { 127 uint32_t ret; 128 pthread_mutex_lock(ring_buf->f_lock); 129 ret = __ring_buffer_put(ring_buf, buffer, size); 130 pthread_mutex_unlock(ring_buf->f_lock); 131 return ret; 132 } 133 #endif
采用多线程模拟生产者和消费者编写测试程序,如下所示:
1 /**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。 2 * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。 3 *@atuher Anker date:2013-12-18 4 * */ 5 #include "ring_buffer.h" 6 #include <pthread.h> 7 #include <time.h> 8 9 #define BUFFER_SIZE 1024 * 1024 10 11 typedef struct student_info 12 { 13 uint64_t stu_id; 14 uint32_t age; 15 uint32_t score; 16 }student_info; 17 18 19 void print_student_info(const student_info *stu_info) 20 { 21 assert(stu_info); 22 printf("id:%lu\t",stu_info->stu_id); 23 printf("age:%u\t",stu_info->age); 24 printf("score:%u\n",stu_info->score); 25 } 26 27 student_info * get_student_info(time_t timer) 28 { 29 student_info *stu_info = (student_info *)malloc(sizeof(student_info)); 30 if (!stu_info) 31 { 32 fprintf(stderr, "Failed to malloc memory.\n"); 33 return NULL; 34 } 35 srand(timer); 36 stu_info->stu_id = 10000 + rand() % 9999; 37 stu_info->age = rand() % 30; 38 stu_info->score = rand() % 101; 39 print_student_info(stu_info); 40 return stu_info; 41 } 42 43 void * consumer_proc(void *arg) 44 { 45 struct ring_buffer *ring_buf = (struct ring_buffer *)arg; 46 student_info stu_info; 47 while(1) 48 { 49 sleep(2); 50 printf("------------------------------------------\n"); 51 printf("get a student info from ring buffer.\n"); 52 ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info)); 53 printf("ring buffer length: %u\n", ring_buffer_len(ring_buf)); 54 print_student_info(&stu_info); 55 printf("------------------------------------------\n"); 56 } 57 return (void *)ring_buf; 58 } 59 60 void * producer_proc(void *arg) 61 { 62 time_t cur_time; 63 struct ring_buffer *ring_buf = (struct ring_buffer *)arg; 64 while(1) 65 { 66 time(&cur_time); 67 srand(cur_time); 68 int seed = rand() % 11111; 69 printf("******************************************\n"); 70 student_info *stu_info = get_student_info(cur_time + seed); 71 printf("put a student info to ring buffer.\n"); 72 ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 73 printf("ring buffer length: %u\n", ring_buffer_len(ring_buf)); 74 printf("******************************************\n"); 75 sleep(1); 76 } 77 return (void *)ring_buf; 78 } 79 80 int consumer_thread(void *arg) 81 { 82 int err; 83 pthread_t tid; 84 err = pthread_create(&tid, NULL, consumer_proc, arg); 85 if (err != 0) 86 { 87 fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n", 88 errno, strerror(errno)); 89 return -1; 90 } 91 return tid; 92 } 93 int producer_thread(void *arg) 94 { 95 int err; 96 pthread_t tid; 97 err = pthread_create(&tid, NULL, producer_proc, arg); 98 if (err != 0) 99 { 100 fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n", 101 errno, strerror(errno)); 102 return -1; 103 } 104 return tid; 105 } 106 107 108 int main() 109 { 110 void * buffer = NULL; 111 uint32_t size = 0; 112 struct ring_buffer *ring_buf = NULL; 113 pthread_t consume_pid, produce_pid; 114 115 pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t)); 116 if (pthread_mutex_init(f_lock, NULL) != 0) 117 { 118 fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n", 119 errno, strerror(errno)); 120 return -1; 121 } 122 buffer = (void *)malloc(BUFFER_SIZE); 123 if (!buffer) 124 { 125 fprintf(stderr, "Failed to malloc memory.\n"); 126 return -1; 127 } 128 size = BUFFER_SIZE; 129 ring_buf = ring_buffer_init(buffer, size, f_lock); 130 if (!ring_buf) 131 { 132 fprintf(stderr, "Failed to init ring buffer.\n"); 133 return -1; 134 } 135 #if 0 136 student_info *stu_info = get_student_info(638946124); 137 ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 138 stu_info = get_student_info(976686464); 139 ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info)); 140 ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info)); 141 print_student_info(stu_info); 142 #endif 143 printf("multi thread test.......\n"); 144 produce_pid = producer_thread((void*)ring_buf); 145 consume_pid = consumer_thread((void*)ring_buf); 146 pthread_join(produce_pid, NULL); 147 pthread_join(consume_pid, NULL); 148 ring_buffer_free(ring_buf); 149 free(f_lock); 150 return 0; 151 }
测试结果如下所示:
4、参考资料
http://blog.csdn.net/linyt/article/details/5764312
http://en.wikipedia.org/wiki/Circular_buffer
巧夺天工的kfifo
Linux kernel里面从来就不缺少简洁,优雅和高效的代码,只是我们缺少发现和品味的眼光。在Linux kernel里面,简洁并不表示代码使用神出鬼没的超然技巧,相反,它使用的不过是大家非常熟悉的基础数据结构,但是kernel开发者能从基础的数据结构中,提炼出优美的特性。
kfifo就是这样的一类优美代码,它十分简洁,绝无多余的一行代码,却非常高效。
关于kfifo信息如下:
本文分析的原代码版本: 2.6.24.4
kfifo的定义文件: kernel/kfifo.c
kfifo的头文件: include/linux/kfifo.h
kfifo概述
kfifo是内核里面的一个First In First
Out数据结构,它采用环形循环队列的数据结构来实现;它提供一个无边界的字节流服务,最重要的一点是,它使用并行无锁编程技术,即当它用于只有一个入队线程和一个出队线程的场情时,两个线程可以并发操作,而不需要任何加锁行为,就可以保证kfifo的线程安全。
kfifo代码既然肩负着这么多特性,那我们先一敝它的代码:
struct kfifo {
unsigned char *buffer; /* the buffer holding the data */
unsigned int size; /* the size of the allocated buffer */
unsigned int in; /* data is added at offset (in % size) */
unsigned int out; /* data is extracted from off. (out % size) */
spinlock_t *lock; /* protects concurrent modifications */
};
这是kfifo的数据结构,kfifo主要提供了两个操作,__kfifo_put(入队操作)和__kfifo_get(出队操作)。 它的各个数据成员如下:
buffer: 用于存放数据的缓存
size: buffer空间的大小,在初化时,将它向上扩展成2的幂
lock: 如果使用不能保证任何时间最多只有一个读线程和写线程,需要使用该lock实施同步。
in, out: 和buffer一起构成一个循环队列。 in指向buffer中队头,而且out指向buffer中的队尾,它的结构如示图如下:
+--------------------------------------------------------------+
| |<----------data---------->| |
+--------------------------------------------------------------+
^ ^ ^
| | |
out in size
当然,内核开发者使用了一种更好的技术处理了in, out和buffer的关系,我们将在下面进行详细分析。
kfifo功能描述
kfifo提供如下对外功能规格
- 只支持一个读者和一个读者并发操作
- 无阻塞的读写操作,如果空间不够,则返回实际访问空间
kfifo_alloc 分配kfifo内存和初始化工作
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
unsigned char *buffer;
struct kfifo *ret;
/*
* round up to the next power of 2, since our ‘let the indices
* wrap‘ tachnique works only in this case.
*/
if (size & (size - 1)) {
BUG_ON(size > 0x80000000);
size = roundup_pow_of_two(size);
}
buffer = kmalloc(size, gfp_mask);
if (!buffer)
return ERR_PTR(-ENOMEM);
ret = kfifo_init(buffer, size, gfp_mask, lock);
if (IS_ERR(ret))
kfree(buffer);
return ret;
}
这里值得一提的是,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻——对kfifo->size取模运算可以转化为与运算,如下:
kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)
在kfifo_alloc函数中,使用size & (size – 1)来判断size 是否为2幂,如果条件为真,则表示size不是2的幂,然后调用roundup_pow_of_two将之向上扩展为2的幂。
这都是常用的技巧,只不过大家没有将它们结合起来使用而已,下面要分析的__kfifo_put和__kfifo_get则是将kfifo->size的特点发挥到了极致。
__kfifo_put和__kfifo_get巧妙的入队和出队
__kfifo_put是入队操作,它先将数据放入buffer里面,最后才修改in参数;__kfifo_get是出队操作,它先将数据从buffer中移走,最后才修改out。你会发现in和out两者各司其职。
下面是__kfifo_put和__kfifo_get的代码
unsigned int __kfifo_put(struct kfifo *fifo,
unsigned char *buffer, unsigned int len)
{
unsigned int l;
len = min(len, fifo->size - fifo->in + fifo->out);
/*
* Ensure that we sample the fifo->out index -before- we
* start putting bytes into the kfifo.
*/
smp_mb();
/* first put the data starting from fifo->in to buffer end */
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
/* then put the rest (if any) at the beginning of the buffer */
memcpy(fifo->buffer, buffer + l, len - l);
/*
* Ensure that we add the bytes to the kfifo -before-
* we update the fifo->in index.
*/
smp_wmb();
fifo->in += len;
return len;
}
奇怪吗?代码完全是线性结构,没有任何if-else分支来判断是否有足够的空间存放数据。内核在这里的代码非常简洁,没有一行多余的代码。
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
这个表达式计算当前写入的空间,换成人可理解的语言就是:
l = kfifo可写空间和预期写入空间的最小值
使用min宏来代if-else分支
__kfifo_get也应用了同样技巧,代码如下:
unsigned int __kfifo_get(struct kfifo *fifo,
unsigned char *buffer, unsigned int len)
{
unsigned int l;
len = min(len, fifo->in - fifo->out);
/*
* Ensure that we sample the fifo->in index -before- we
* start removing bytes from the kfifo.
*/
smp_rmb();
/* first get the data from fifo->out until the end of the buffer */
l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
/* then get the rest (if any) from the beginning of the buffer */
memcpy(buffer + l, fifo->buffer, len - l);
/*
* Ensure that we remove the bytes from the kfifo -before-
* we update the fifo->out index.
*/
smp_mb();
fifo->out += len;
return len;
}
认真读两遍吧,我也读了多次,每次总是有新发现,因为in, out和size的关系太巧妙了,竟然能利用上unsigned int回绕的特性。
原来,kfifo每次入队或出队,kfifo->in或kfifo->out只是简单地kfifo->in/kfifo->out += len,并没有对kfifo->size 进行取模运算。因此kfifo->in和kfifo->out总是一直增大,直到unsigned in最大值时,又会绕回到0这一起始端。但始终满足:
kfifo->in - kfifo->out <= kfifo->size
即使kfifo->in回绕到了0的那一端,这个性质仍然是保持的。
对于给定的kfifo:
数据空间长度为:kfifo->in - kfifo->out
而剩余空间(可写入空间)长度为:kfifo->size - (kfifo->in - kfifo->out)
尽管kfifo->in和kfofo->out一直超过kfifo->size进行增长,但它对应在kfifo->buffer空间的下标却是如下:
kfifo->in % kfifo->size (i.e. kfifo->in & (kfifo->size - 1))
kfifo->out % kfifo->size (i.e. kfifo->out & (kfifo->size - 1))
往kfifo里面写一块数据时,数据空间、写入空间和kfifo->size的关系如果满足:
kfifo->in % size + len > size
那就要做写拆分了,见下图:
kfifo_put(写)空间开始地址
|
\_/
|XXXXXXXXXX
XXXXXXXX|
+--------------------------------------------------------------+
| |<----------data---------->| |
+--------------------------------------------------------------+
^ ^ ^
| | |
out%size in%size size
^
|
写空间结束地址
第一块当然是: [kfifo->in % kfifo->size, kfifo->size]
第二块当然是:[0, len - (kfifo->size - kfifo->in % kfifo->size)]
下面是代码,细细体味吧:
/* first put the data starting from fifo->in to buffer end */
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
/* then put the rest (if any) at the beginning of the buffer */
memcpy(fifo->buffer, buffer + l, len - l);
对于kfifo_get过程,也是类似的,请各位自行分析。
kfifo_get和kfifo_put无锁并发操作
计算机科学家已经证明,当只有一个读经程和一个写线程并发操作时,不需要任何额外的锁,就可以确保是线程安全的,也即kfifo使用了无锁编程技术,以提高kernel的并发。
kfifo使用in和out两个指针来描述写入和读取游标,对于写入操作,只更新in指针,而读取操作,只更新out指针,可谓井水不犯河水,示意图如下:
|<--写入-->|
+--------------------------------------------------------------+
| |<----------data----->| |
+--------------------------------------------------------------+
|<--读取-->|
^ ^ ^
| | |
out in size
为了避免读者看到写者预计写入,但实际没有写入数据的空间,写者必须保证以下的写入顺序:
- 往[kfifo->in, kfifo->in + len]空间写入数据
- 更新kfifo->in指针为 kfifo->in + len
在操作1完成时,读者是还没有看到写入的信息的,因为kfifo->in没有变化,认为读者还没有开始写操作,只有更新kfifo->in之后,读者才能看到。
那么如何保证1必须在2之前完成,秘密就是使用内存屏障:smp_mb(),smp_rmb(), smp_wmb(),来保证对方观察到的内存操作顺序。
总结
读完kfifo代码,令我想起那首诗“众里寻他千百度,默然回首,那人正在灯火阑珊处”。不知你是否和我一样,总想追求简洁,高质量和可读性的代码,当用尽各种方法,江郞才尽之时,才发现Linux kernel里面的代码就是我们寻找和学习的对象。
原文地址:https://www.cnblogs.com/alantu2018/p/8468969.html