[转]图像超分辨率重建简介

图像超分辨率重建技术就是利用一组低质量、低分辨率图像(或运动序列)来产生单幅高质量、高分辨率图像。图像超分辨率重建应用领域及其宽广,在军事,医学,公共安全,计算机视觉等方面都存在着重要的应用前景。在计算机视觉领域,图像超分辨率重建技术有可能使图像实现从检出水平(detection level)向识别水平(recognition level)的转化,或更进一步实现向细辨水平(identification level)的转化。图像超分辨率重建技术可以提高图像的识别能力和识别精度。图像超分辨率重建技术可以实现目标物的专注分析,从而可以获取感兴趣区域更高空间分辨率的图像,而不必直接采用数据量巨大的高空间分辨率图像的配置。

目前超分辨率技术主要有以下两大类:基于重建的方法、基于学习的方法。

1、基于重建的超分辨率技术:

基于重建的超分辨率方法的基础是均衡及非均衡采样定理。它假设低分辨率的输入采样信号(图像) 能很好地预估出原始的高分辨率信号(图像)。绝大多数超分辨率算法都属于这一类,其中主要包括频域法和空域法。

频率域方法是图像超分辨率重建中一类重要方法,其中最主要的是消混叠重建方法。消混叠重建方法是通过解混叠而改善图像的空间分辨率实现超分辨率复原,最早的研究工作是由 Tsai 和 Huang在 1984 年进行的。在原始场景信号带宽有限的假设下,利用离散傅立叶变换和连续傅立叶变换之间的平移、混叠性质,给出了一个由一系列欠采样观察图像数据复原高分辨率图像的公式。多幅观察图像经混频而得到的离散傅立叶变换系数与未知场景的连续傅立叶变换系数以方程组的形式联系起来,方程组的解就是原始图像的频率域系数,再对频率域系数进行傅立叶逆变换就可以实现原始图像的准确复原。

在空域类方法中,其线性空域观测模型涉及全局和局部运动、光学模糊、帧内运动模糊、空间可变点扩散函数、非理想采样等内容。空域方法具有很强的包含空域先验约束的能力,主要包括非均匀空间样本内插、迭代反投影方法、凸集投影法、最大后验概率以及混合 MAP/ POCS 方法、最优和自适应滤波方法、确定性重建方法等。

2、基于学习的超分辨率技术

基于学习的方法是近年来超分辨率算法研究中的热点,它采用大量的高分辨率图像构造学习库产生学习模型,在对低分辨率图像进行恢复的过程中引入由学习模型获得的先验知识,以得到图像的高频细节,获得较好的图像恢复效果。

具体步骤为:

(1)将高分辨率图像按照降质模型进行降质,产生训练集。

(2)根据高分辨率图像的低频部分和高频部分对应关系对图像分块,通过一定

算法进行学习,获得先验知识,建立学习模型。

(3)以输入的低分辨率块为依据,在建立好的训练集中搜索最匹配的高频块。

基于学习的超分辨率方法中关键是建立学习模型,获得先验知识。常用的学习模型有马尔科夫随机场模型、图像金字塔模型、神经网络模型、主成分分析模型等。基于学习的方法充分利用了图像本身的先验知识,在不增加输入图像样本数量的情况下仍能产生高频细节,获得比基于重建方法更好的复原结果,并能较好的应用于人脸和文字等图像的复原。

目前,图像超分辨率重建的研究比较成熟,但距离实用还有较大差距。未来研究方向主要集中在以下几个方面:

1)发展和寻求新的退化模型,使成像模型更加精确和全面,实现对点扩散函数和噪声的精确估计。图像超分辨率增强的成功依赖于准确的、符合实际成像系统特性和成像条件的降模型,而要获得符合实际成像过程的降质模型是十分困难的,通常采用简单、确定的降质模型进行近似,这样的近似模型与实际成像过程差距较大。

2)压缩域的超分辨率重建。传统的超分辨率算法都是针对图像序列,而实际中最常见的图像序列是视频文件。因而下一步的工作可以针对不同的视频压缩格式和编解码技术,在超分辨率算法中综合考虑成像模型和压缩算法带来的图像降质效果,以及运动补偿和编码传输机制,实现压缩域的超分辨率重建。

3)效率和鲁棒性问题。目前的超分辨率算法具有很高的计算复杂度,如何减少计算量,提高算法速度,是下一步值得研究问题。同时,在目前很多算法中都做了各种假设,如照度变等,这在实际应用中是很难满足的,因此需要研究稳健的算法满足实际应用的需要。

4)模糊图像和三维图像的超分辨率研究。模糊一直是图像处理中的一个难点,如何对模糊图像进行超分辨率需要进一步研究。目前针对三维图像的超分辨率研究还很少,如何对三维图像进行建模也是一个值得研究的课题。

5)超分辨率客观评价标准研究。目前对于图像超分辨率结果主要依靠人的主观评价,缺少一种客观的评价标准,现有的 PSNR、MSE 等并不能很好的反映超分辨率效果,需要发展一种客观的评价机制。

转载原文:图像超分辨率重建简介

原文地址:https://www.cnblogs.com/rainbow70626/p/9041008.html

时间: 2024-10-07 05:45:32

[转]图像超分辨率重建简介的相关文章

JPEG压缩图像超分辨率重建算法

压缩图像超分辨率重建算法学习 超分辨率重建是由一幅或多幅的低分辨率图像重构高分辨率图像,如由4幅1m分辨率的遥感图像重构分辨率0.25m分辨率图像.在军用/民用上都有非常大应用. 眼下的超分辨率重建方法主要分为3类:基于插值.基于学习.基于重建的方法.现在已经研究得比較多.可是大多数算法都是对普通图像进行研究,针对压缩图像/视频超分辨率重建的研究比較少.近期查阅部分文献.进行了学习.在此做些总结. 相关的文献: 1.Super-resolution from compressed video 2

图像超分辨率重建之srcnn,基于tensorflow实现

本篇适用人群对于那些知道srcnn的每个步骤的人但是不是很会打代码的人 首先,附上我的github:https://github.com/zzydashuaibi/srcnn_tensorflow 在写代码之前,我们需要明白一件事就是我们每一次训练实际上是训练图片的某一部分(33*33)最后输出的是卷积后的大小只有22*22,所以srcnn的预处理要比其他的图像重建的模型要复杂一点. 他除了一般的预处理操作,还需要将图片分割,最后的训练完还做实验的时候还需要将图片结合起来,至于其他的,相信你自己

【超分辨率专题】—基于深度学习的图像超分辨率最新进展与趋势

1.简介 图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析.生物特征识别.视频监控与安全等实际场景中有着广泛的应用.随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,取得了目前最优的性能和效果.本文介绍的一篇综述(Deep Learning for Image Super-resolution:A Survey)给出了一个统一的深度学习视角,来回顾最近的超分技术进展,主要包括三个方面: 给出了综合性的基于深度学习的图像超分技术综述,包括问题设置.数据

用一个玩具例子说明基于视频的超分辨率重建的基本思想

本文是基于知乎上的一个答案 基于视频的超分辨率重建是指从许多帧连续的低分辨率图像中重建出一幅高分辨率的图像,并且这幅高分辨率的图像能够显示出单帧低分辨率图像中丢掉的细节,比如下面是一个2秒视频(176x144)中的一帧: 为了方便和分辨率重建之后的图片对比,用Nearest Neighbor放大到了704x576.而下面是重建后的超分辨率图像: 可以看到,许多丢失的细节被重建了,这就是基于视频序列的超分辨率重建. 接下来用一个玩具例子来说明基本原理,首先打开画图板,写下一个线条分明,软绵无力,面

超分辨率重建——背景与研究意义

一个课题,首先别人会问你为什么会研究这个,所以这是必须的. 超分辨率重建是指通过对数字图像信号的分析,采用软件算法的方式,由一帧或多帧图像重建转化成更高分辨率图像或视频的技术. 既然采用软件的算法,必然是因为硬件上的不足,那么当前硬件上存在哪些技术性的不足呢,下面有请: 1: 减小传感器中的像素尺寸,提高阵列密度 一方面技术工艺限制,另一方面当像素尺寸减小到一定程度时,加性噪声几乎维持不变,有效信号的能量将随传感器像素尺寸成比例减小,导致所形成图像的信噪比下降,退化反而加重 2:增大成像阵列芯片

图像超分辨率项目帮你「拍」出高清照片

相机不够算法凑,拥有超级拍照能力的手机也离不开算法的加持.本文介绍的图像超分辨率项目可以帮你补齐相机镜头的短板. 华为 P30 发布会上展示的埃菲尔铁塔高清远距离照片 今天,一位 Reddit 网友贴出了自己基于 Keras 的图像超分辨率项目,可以让照片放大后依然清晰.先来看一下效果. 放大数倍后,照片中的蝴蝶(蛾子?)依然没有失真,背上的绒毛清晰可见 作者表示,该项目旨在改善低分辨率图像的质量,使其焕然一新.使用该工具可以对图像进行超级放缩,还能很容易地在 RDN 和 GAN上进行实验. 该

基于自相似的单幅图像超分辨率放大

先放上处理效果 小图像: 放大4倍的图像: 参考论文:http://www.cs.huji.ac.il/~raananf/projects/lss_upscale/ 应用: 可用于常用小幅图像的放大处理,也可应用于标清视频向高清/超高清视频的放大显示处理.相比于常用的bilinear.bicubic.window sinc等算法,可得到清晰度更高的效果. 缺点: 由于作者未公开代码,因此按照论文实现的效果,与作者给出的放大同等倍数效果仍存在一些差异,后续还需要研究.

基于学习的超分辨率算法

基于学习的超分辨率技术最早是由卡耐基一梅隆实验室的 Baker S在2000年提出的.他们提出一种基于识别先验 知识的方法,通过算法去学习训练指定类别,将得到的先验 知识用于超分辨率.随后,多伦多大学的 Hertzmann a等提 出了基于多尺度自动回归的图像类比算法.麻省理工学院的 Freeman WT5等提出了一个基于例子的方法,利用马尔可夫 网络来学习训练库中与低分辨率图像不同区域相对应的高分 辨率图像的细节,再用学习得到的关系来预测输入低分辨率 图像的细节信息. Christopher

看得“深”、看得“清” —— 深度学习在图像超清化的应用

日复一日的人像临摹练习使得画家能够仅凭几个关键特征画出完整的人脸.同样地,我们希望机器能够通过低清图像有限的图像信息,推断出图像对应的高清细节,这就需要算法能够像画家一样"理解"图像内容.至此,传统的规则算法不堪重负,新兴的深度学习照耀着图像超清化的星空. 本文首发于<程序员>杂志 图1. 最新的Pixel递归网络在图像超清化上的应用.左图为低清图像,右图为其对应的高清图像,中间为算法生成结果.这是4倍超清问题,即将边长扩大为原来的4倍. 得益于硬件的迅猛发展,短短几年间,