深入理解JVM(一)——JVM内存模型

JVM内存模型

Java虚拟机(Java Virtual Machine=JVM)的内存空间分为五个部分,分别是: 
1. 程序计数器 
2. Java虚拟机栈 
3. 本地方法栈 
4. 堆 
5. 方法区。

下面对这五个区域展开深入的介绍。

1. 程序计数器

1.1. 什么是程序计数器?

程序计数器是一块较小的内存空间,可以把它看作当前线程正在执行的字节码的行号指示器。也就是说,程序计数器里面记录的是当前线程正在执行的那一条字节码指令的地址。 
注:但是,如果当前线程正在执行的是一个本地方法,那么此时程序计数器为空。

1.2. 程序计数器的作用

程序计数器有两个作用:

  1. 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
  2. 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

1.3. 程序计数器的特点

  1. 是一块较小的存储空间
  2. 线程私有。每条线程都有一个程序计数器。
  3. 是唯一一个不会出现OutOfMemoryError的内存区域。
  4. 生命周期随着线程的创建而创建,随着线程的结束而死亡。

2. Java虚拟机栈(JVM Stack)

2.1. 什么是Java虚拟机栈?

Java虚拟机栈是描述Java方法运行过程的内存模型。 
Java虚拟机栈会为每一个即将运行的Java方法创建一块叫做“栈帧”的区域,这块区域用于存储该方法在运行过程中所需要的一些信息,这些信息包括:

  1. 局部变量表 
    存放基本数据类型变量、引用类型的变量、returnAddress类型的变量。
  2. 操作数栈
  3. 动态链接
  4. 方法出口信息

当一个方法即将被运行时,Java虚拟机栈首先会在Java虚拟机栈中为该方法创建一块“栈帧”,栈帧中包含局部变量表、操作数栈、动态链接、方法出口信息等。当方法在运行过程中需要创建局部变量时,就将局部变量的值存入栈帧的局部变量表中。 
当这个方法执行完毕后,这个方法所对应的栈帧将会出栈,并释放内存空间。

注意:人们常说,Java的内存空间分为“栈”和“堆”,栈中存放局部变量,堆中存放对象。 
这句话不完全正确!这里的“堆”可以这么理解,但这里的“栈”只代表了Java虚拟机栈中的局部变量表部分。真正的Java虚拟机栈是由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法出口信息。

2.2. Java虚拟机栈的特点

  1. 局部变量表的创建是在方法被执行的时候,随着栈帧的创建而创建。而且,局部变量表的大小在编译时期就确定下来了,在创建的时候只需分配事先规定好的大小即可。此外,在方法运行的过程中局部变量表的大小是不会发生改变的。
  2. Java虚拟机栈会出现两种异常:StackOverFlowError和OutOfMemoryError。 
    a) StackOverFlowError: 
    若Java虚拟机栈的内存大小不允许动态扩展,那么当线程请求栈的深度超过当前Java虚拟机栈的最大深度的时候,就抛出StackOverFlowError异常。 
    b) OutOfMemoryError: 
    若Java虚拟机栈的内存大小允许动态扩展,且当线程请求栈时内存用完了,无法再动态扩展了,此时抛出OutOfMemoryError异常。
  3. Java虚拟机栈也是线程私有的,每个线程都有各自的Java虚拟机栈,而且随着线程的创建而创建,随着线程的死亡而死亡。

注:StackOverFlowError和OutOfMemoryError的异同? 
StackOverFlowError表示当前线程申请的栈超过了事先定好的栈的最大深度,但内存空间可能还有很多。 
而OutOfMemoryError是指当线程申请栈时发现栈已经满了,而且内存也全都用光了。

3. 本地方法栈

3.1. 什么是本地方法栈?

本地方法栈和Java虚拟机栈实现的功能类似,只不过本地方法区是本地方法运行的内存模型。

本地方法被执行的时候,在本地方法栈也会创建一个栈帧,用于存放该本地方法的局部变量表、操作数栈、动态链接、出口信息。

方法执行完毕后相应的栈帧也会出栈并释放内存空间。

也会抛出StackOverFlowError和OutOfMemoryError异常。

4. 堆

4.1. 什么是堆?

堆是用来存放对象的内存空间。 
几乎所有的对象都存储在堆中。

4.2. 堆的特点

  1. 线程共享 
    整个Java虚拟机只有一个堆,所有的线程都访问同一个堆。而程序计数器、Java虚拟机栈、本地方法栈都是一个线程对应一个的。
  2. 在虚拟机启动时创建
  3. 垃圾回收的主要场所。
  4. 可以进一步细分为:新生代、老年代。 
    新生代又可被分为:Eden、From Survior、To Survior。 
    不同的区域存放具有不同生命周期的对象。这样可以根据不同的区域使用不同的垃圾回收算法,从而更具有针对性,从而更高效。
  5. 堆的大小既可以固定也可以扩展,但主流的虚拟机堆的大小是可扩展的,因此当线程请求分配内存,但堆已满,且内存已满无法再扩展时,就抛出OutOfMemoryError。

5. 方法区

5.1. 什么是方法区?

Java虚拟机规范中定义方法区是堆的一个逻辑部分。 
方法区中存放已经被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等。

5.2. 方法区的特点

  1. 线程共享 
    方法区是堆的一个逻辑部分,因此和堆一样,都是线程共享的。整个虚拟机中只有一个方法区。
  2. 永久代 
    方法区中的信息一般需要长期存在,而且它又是堆的逻辑分区,因此用堆的划分方法,我们把方法区称为老年代。
  3. 内存回收效率低 
    方法区中的信息一般需要长期存在,回收一遍内存之后可能只有少量信息无效。 
    对方法区的内存回收的主要目标是:对常量池的回收 和 对类型的卸载。
  4. Java虚拟机规范对方法区的要求比较宽松。 
    和堆一样,允许固定大小,也允许可扩展的大小,还允许不实现垃圾回收。

5.3. 什么是运行时常量池?

方法区中存放三种数据:类信息、常量、静态变量、即时编译器编译后的代码。其中常量存储在运行时常量池中。

我们一般在一个类中通过public static final来声明一个常量。这个类被编译后便生成Class文件,这个类的所有信息都存储在这个class文件中。

当这个类被Java虚拟机加载后,class文件中的常量就存放在方法区的运行时常量池中。而且在运行期间,可以向常量池中添加新的常量。如:String类的intern()方法就能在运行期间向常量池中添加字符串常量。

当运行时常量池中的某些常量没有被对象引用,同时也没有被变量引用,那么就需要垃圾收集器回收。

6. 直接内存

直接内存是除Java虚拟机之外的内存,但也有可能被Java使用。

在NIO中引入了一种基于通道和缓冲的IO方式。它可以通过调用本地方法直接分配Java虚拟机之外的内存,然后通过一个存储在Java堆中的DirectByteBuffer对象直接操作该内存,而无需先将外面内存中的数据复制到堆中再操作,从而提升了数据操作的效率。

直接内存的大小不受Java虚拟机控制,但既然是内存,当内存不足时就会抛出OOM异常。

综上所述

    1. Java虚拟机的内存模型中一共有两个“栈”,分别是:Java虚拟机栈和本地方法栈。 
      两个“栈”的功能类似,都是方法运行过程的内存模型。并且两个“栈”内部构造相同,都是线程私有。 
      只不过Java虚拟机栈描述的是Java方法运行过程的内存模型,而本地方法栈是描述Java本地方法运行过程的内存模型。
    2. Java虚拟机的内存模型中一共有两个“堆”,一个是原本的堆,一个是方法区。方法区本质上是属于堆的一个逻辑部分。堆中存放对象,方法区中存放类信息、常量、静态变量、即时编译器编译的代码。
    3. 堆是Java虚拟机中最大的一块内存区域,也是垃圾收集器主要的工作区域。
    4. 程序计数器、Java虚拟机栈、本地方法栈是线程私有的,即每个线程都拥有各自的程序计数器、Java虚拟机栈、本地方法区。并且他们的生命周期和所属的线程一样。 
      而堆、方法区是线程共享的,在Java虚拟机中只有一个堆、一个方法栈。并在JVM启动的时候就创建,JVM停止才销毁。

原文地址:https://www.cnblogs.com/adolfmc/p/8999202.html

时间: 2024-11-10 08:30:44

深入理解JVM(一)——JVM内存模型的相关文章

Java 进阶(一) JVM运行时内存模型

1.JVM运行时数据区域的划分 a.程序计数器(Program Counter Register) 一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器.每个线程拥有独立的一个计数器,如果当前执行的是Native方法,则计数器值为空. b.JVM栈(Java Virtual Machine Stack) 描述Java方法执行的内存模型,每个方法在执行的同时都会创建一个栈帧(Stacks Frame)用于存储局部变量表,操作数栈,动态链接,方法出口等信息. 每一个方法从调用直至执行完成

jvm(12)-java内存模型与线程

[0]README 0.1)本文部分文字描述转自“深入理解jvm”,旨在学习“java内存模型与线程” 的基础知识: [1]概述 1)并发处理的广泛应用是使得 Amdahl 定律代替摩尔定律称为计算机性能发展源动力的根本原因: 2)Amdahl 定律:该定律通过系统中并行化与串行化的比重来描述多处理器系统能获得的运算加速能力: 3)摩尔定律:该定律用于描述处理器晶体管数量与运行效率间的发展关系: Conclusion)这两个定律的更替代表了近年来硬件发展从追求处理器频率到追求多核心并行处理的发展

JVM学习 - 体系结构 内存模型

一:Java技术体系模块图 二:JVM内存区域模型 1.方法区 也称"永久代" ."非堆",  它用于存储虚拟机加载的类信息.常量.静态变量.是各个线程共享的内存区域.默认最小值为16MB,最大值为64MB,可以通过-XX:PermSize 和 -XX:MaxPermSize 参数限制方法区的大小. 运行时常量池:是方法区的一部分,Class文件中除了有类的版本.字段.方法.接口等描述信息外,还有一项信息是常量池,用于存放编译器生成的各种符号引用,这部分内容将在类加

JVM(二):内存模型

内存模型 Java堆(Heap) Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块.Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建.此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存. Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做"GC堆".如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java堆中还可以细分为:新生代和老年代:新生代又可细分为 Eden空间.From Survivor空间

JVM原理与内存模型

编译型语言:一次性地编译成机器码,生成可执行文件.解释型语言:使用专门的解释器对源码逐行解释成特定平台的机器码并立即执行的语言. JVM原理:Java语言既是编译型语言,又是解释型语言:Java源码通过javac命令被编译成.class文件,这种字节码文件不面向任何平台,只面向JVM(Java Virtual Machine):JVM是Java跨平台的关键部分,其向上提供给Java字节码程序的接口完全相同,而向下适应不同平台的接口则互不相同,为特定平台提供特定机器码,使用java命令解释执行.

jvm 03-java堆内存模型

java中最大的特点在于其具备良好的垃圾收集特性 GC是整个java之中最重要的安全保证 整个JVM中的GC的处理机制:对不需要的对象进行标记,而后进行清除 JVM堆内存划分 在JDK1.8之后,将最初的永久带内存空间取消了,该图为JDK1.8之前的内存空间组成 取消永久代目的是为了将HotSpot于JRockit两个虚拟机标准联合为一个 在整个JVM堆内存之中实际上将内存分为了三部分: 新生带(年轻代):新对象和没达到一定年龄的对象都在年轻代 老年代:被长时间使用的对象,老年代的内存空间应该要

深入理解JMM(Java内存模型) --(三)顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.Java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)-

深入理解JMM(Java内存模型) --(七)总结

JMM 掌管着一个线程对内存的动作 (读和写)影响其他线程对内存的动作的方式.由于使用处理器寄存器和预处理 cache 来提高内存访问速度带来的性能提升,Java 语言规范(JLS)允许一些内存操作并不对于所有其他线程立即可见.有两种语言机制可用于保证跨线程内存操作的一致性――synchronized 和 volatile.按照 JLS 的说法,"在没有显式同步的情况下,一个实现可以自由地更新主存,更新时所采取的顺序可能是出人意料的."其意思是说,如果没有同步的话,在一个给定线程中某种

深入理解JMM(Java内存模型) --(四)volatile

volatile的特性 当我们声明共享变量为volatile后,对这个变量的读/写将会很特别.理解volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个读/写操作做了同步.下面我们通过具体的示例来说明,请看下面的示例代码: [java] view plain copy class VolatileFeaturesExample { volatile long vl = 0L;  //使用volatile声明64位的long型变量 public

深入理解JMM(Java内存模型) --(一)

并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程序用于控制不同线程之间操作发生相对顺序的机制.在共享内存并发