性能测试--十个命令迅速发现性能问题

十个命令迅速发现性能问题

"""
uptime
dmesg | tail
vmstat 1
mpstat -P ALL 1
pidstat 1
iostat -xz 1
free -m
sar -n DEV 1
sar -n TCP,ETCP 1
top
"""

1. uptime

$ uptime
23:51:26 up 21:31, 1 user, load average: 30.02, 26.43, 19.02

这是一种用来快速查看系统平均负载的方法,它表明了系统中有多少要运行的任务(进程)。在 Linux 系统中,这些数字包含了需要在 CPU 中运行的进程以及正在等待 I/O(通常是磁盘 I/O)的进程。它仅仅是对系统负载的一个粗略展示,稍微看下即可。你还需要其他工具来进一步了解具体情况。

这三个数字展示的是一分钟、五分钟和十五分钟内系统的负载总量平均值按照指数比例压缩得到的结果。从中我们可以看到系统的负载是如何随时间变化的。比方你在检查一个问题,然后看到 1 分钟对应的值远小于 15 分钟的值,那么可能说明这个问题已经过去了,你没能及时观察到。

在上面这个例子中,系统负载在随着时间增加,因为最近一分钟的负载值超过了 30,而 15 分钟的平均负载则只有 19。这样显著的差距包含了很多含义,比方 CPU 负载。若要进一步确认的话,则要运行 vmstat 或 mpstat 命令,这两个命令请参考后面的第 3 和第 4 章节。

2. dmesg | tail

$ dmesg | tail
[1880957.563150] perl invoked oom-killer: gfp_mask=0x280da, order=0, oom_score_adj=0
[...]
[1880957.563400] Out of memory: Kill process 18694 (perl) score 246 or sacrifice child
[1880957.563408] Killed process 18694 (perl) total-vm:1972392kB, anon-rss:1953348kB, file-rss:0kB
[2320864.954447] TCP: Possible SYN flooding on port 7001. Dropping request.  Check SNMP counters.

这条命令显式了最近的 10 条系统消息,如果它们存在的话。查找能够导致性能问题的错误。上面的例子包含了 oom-killer,以及 TCP 丢弃一个请求。

千万不要错过这一步!dmesg 命令永远值得一试。

3. vmstat 1

$ vmstat 1
procs ---------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r  b swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
34  0    0 200889792  73708 591828    0    0     0     5    6   10 96  1  3  0  0
32  0    0 200889920  73708 591860    0    0     0   592 13284 4282 98  1  1  0  0
32  0    0 200890112  73708 591860    0    0     0     0 9501 2154 99  1  0  0  0
32  0    0 200889568  73712 591856    0    0     0    48 11900 2459 99  0  0  0  0
32  0    0 200890208  73712 591860    0    0     0     0 15898 4840 98  1  1  0  0

vmstat(8) 是虚拟内存统计的简称,其是一个常用工具(几十年前为了 BSD 所创建)。其在每行打印一条关键的服务器的统计摘要。

vmstat 命令指定一个参数 1 运行,来打印每一秒的统计摘要。(这个版本的 vmstat)输出的第一行的那些列,显式的是开机以来的平均值,而不是前一秒的值。现在,我们跳过第一行,除非你想要了解并记住每一列。

检查这些列:

  • r:CPU 中正在运行和等待运行的进程的数量。其提供了一个比平均负载更好的信号来确定 CPU 是否饱和,因为其不包含 I/O。解释:“r”的值大于了 CPU 的数量就表示已经饱和了。
  • free:以 kb 为单位显式的空闲内存。如果数字位数很多,说明你有足够的空闲内存。“free -m” 命令,是下面的第七个命令,其可以更好的说明空闲内存的状态。
  • si, so:Swap-ins 和 swap-outs。如果它们不是零,则代表你的内存不足了。
  • us, sy, id, wa, st:这些都是平均了所有 CPU 的 CPU 分解时间。它们分别是用户时间(user)、系统时间(内核)(system)、空闲(idle)、等待 I/O(wait)、以及占用时间(stolen)(被其他访客,或使用 Xen,访客自己独立的驱动域)。

CPU 分解时间将会通过用户时间加系统时间确认 CPU 是否为忙碌状态。等待 I/O 的时间一直不变则表明了一个磁盘瓶颈;这就是 CPU 的闲置,因为任务都阻塞在等待挂起磁盘 I/O 上了。你可以把等待 I/O 当成是 CPU 闲置的另一种形式,其给出了为什么 CPU 闲置的一个线索。

对于 I/O 处理来说,系统时间是很重要的。一个高于 20% 的平均系统时间,可以值得进一步的探讨:也许内核在处理 I/O 时效率太低了。

在上面的例子中,CPU 时间几乎完全花在了用户级,表明应用程序占用了太多 CPU 时间。而 CPU 的平均使用率也在 90% 以上。这不一定是一个问题;检查一下“r”列中的饱和度。

4. mpstat -P ALL 1

$ mpstat -P ALL 1
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015  _x86_64_ (32 CPU)

07:38:49 PM  CPU   %usr  %nice   %sys %iowait   %irq  %soft  %steal  %guest  %gnice  %idle
07:38:50 PM  all  98.47   0.00   0.75    0.00   0.00   0.00    0.00    0.00    0.00   0.78
07:38:50 PM    0  96.04   0.00   2.97    0.00   0.00   0.00    0.00    0.00    0.00   0.99
07:38:50 PM    1  97.00   0.00   1.00    0.00   0.00   0.00    0.00    0.00    0.00   2.00
07:38:50 PM    2  98.00   0.00   1.00    0.00   0.00   0.00    0.00    0.00    0.00   1.00
07:38:50 PM    3  96.97   0.00   0.00    0.00   0.00   0.00    0.00    0.00    0.00   3.03
[...]

这个命令打印每个 CPU 的 CPU 分解时间,其可用于对一个不均衡的使用情况进行检查。一个单独 CPU 很忙碌则代表了正在运行一个单线程的应用程序。

5. pidstat 1

$ pidstat 1
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015    _x86_64_    (32 CPU)

07:41:02 PM   UID       PID    %usr %system  %guest    %CPU   CPU  Command
07:41:03 PM     0         9    0.00    0.94    0.00    0.94     1  rcuos/0
07:41:03 PM     0      4214    5.66    5.66    0.00   11.32    15  mesos-slave
07:41:03 PM     0      4354    0.94    0.94    0.00    1.89     8  java
07:41:03 PM     0      6521 1596.23    1.89    0.00 1598.11    27  java
07:41:03 PM     0      6564 1571.70    7.55    0.00 1579.25    28  java
07:41:03 PM 60004     60154    0.94    4.72    0.00    5.66     9  pidstat

07:41:03 PM   UID       PID    %usr %system  %guest    %CPU   CPU  Command
07:41:04 PM     0      4214    6.00    2.00    0.00    8.00    15  mesos-slave
07:41:04 PM     0      6521 1590.00    1.00    0.00 1591.00    27  java
07:41:04 PM     0      6564 1573.00   10.00    0.00 1583.00    28  java
07:41:04 PM   108      6718    1.00    0.00    0.00    1.00     0  snmp-pass
07:41:04 PM 60004     60154    1.00    4.00    0.00    5.00     9  pidstat

pidstat 命令有点像 top 命令对每个进程的统计摘要,但循环打印一个滚动的统计摘要来代替 top 的刷屏。其可用于实时查看,同时也可将你所看到的东西(复制粘贴)到你的调查记录中。

上面的例子表明两个 Java 进程正在消耗 CPU。%CPU 这列是所有 CPU 合计的;1591% 表示这个 Java 进程消耗了将近 16 个 CPU。

6. iostat -xz 1

$ iostat -xz 1
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015  _x86_64_ (32 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          73.96    0.00    3.73    0.03    0.06   22.21

Device:   rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
xvda        0.00     0.23    0.21    0.18     4.52     2.08    34.37     0.00    9.98   13.80    5.42   2.44   0.09
xvdb        0.01     0.00    1.02    8.94   127.97   598.53   145.79     0.00    0.43    1.78    0.28   0.25   0.25
xvdc        0.01     0.00    1.02    8.86   127.79   595.94   146.50     0.00    0.45    1.82    0.30   0.27   0.26
dm-0        0.00     0.00    0.69    2.32    10.47    31.69    28.01     0.01    3.23    0.71    3.98   0.13   0.04
dm-1        0.00     0.00    0.00    0.94     0.01     3.78     8.00     0.33  345.84    0.04  346.81   0.01   0.00
dm-2        0.00     0.00    0.09    0.07     1.35     0.36    22.50     0.00    2.55    0.23    5.62   1.78   0.03
[...]

这是用于查看块设备(磁盘)情况的一个很棒的工具,无论是对工作负载还是性能表现来说。查看个列:

r/s, w/s, rkB/s, wkB/s:这些分别代表该设备每秒的读次数、写次数、读取 kb 数,和写入 kb 数。这些用于描述工作负载。性能问题可能仅仅是由于施加了过大的负载。

await:以毫秒为单位的 I/O 平均消耗时间。这是应用程序消耗的实际时间,因为它包括了排队时间和处理时间。比预期更大的平均时间可能意味着设备的饱和,或设备出了问题。

avgqu-sz:向设备发出的请求的平均数量。值大于 1 说明已经饱和了(虽说设备可以并行处理请求,尤其是由多个磁盘组成的虚拟设备。)

%util:设备利用率。这个值是一个显示出该设备在工作时每秒处于忙碌状态的百分比。若值大于 60%,通常表明性能不佳(可以从 await 中看出),虽然它取决于设备本身。值接近 100% 通常意味着已饱和。

如果该存储设备是一个面向很多后端磁盘的逻辑磁盘设备,则 100% 利用率可能只是意味着当前正在处理某些 I/O 占用,然而,后端磁盘可能远未饱和,并且可能能够处理更多的工作。

请记住,磁盘 I/O 性能较差不一定是程序的问题。许多技术通常是异步 I/O,使应用程序不会被阻塞并遭受延迟(例如,预读,以及写缓冲)。

7. free -m

$ free -m
             total       used       free     shared    buffers     cached
Mem:        245998      24545     221453         83         59        541
-/+ buffers/cache:      23944     222053
Swap:            0          0          0

右边的两列显式:

buffers:用于块设备 I/O 的缓冲区缓存。

cached:用于文件系统的页面缓存。

我们只是想要检查这些不接近零的大小,其可能会导致更高磁盘 I/O(使用 iostat 确认),和更糟糕的性能。上面的例子看起来还不错,每一列均有很多 M 个大小。

比起第一行,-/+ buffers/cache 提供的内存使用量会更加准确些。Linux 会把暂时用不上的内存用作缓存,一旦应用需要的时候就立刻重新分配给它。所以部分被用作缓存的内存其实也算是空闲的内存。为了解释这一点, 甚至有人专门建了个网站: linuxatemyram。

如果你在 Linux 上安装了 ZFS,这一点会变得更加困惑,因为 ZFS 它自己的文件系统缓存不算入free -m。有时候发现系统已经没有多少空闲内存可用了,其实内存却都待在 ZFS 的缓存里。

8. sar -n DEV 1

$ sar -n DEV 1
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015     _x86_64_    (32 CPU)

12:16:48 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  rxmcst/s   %ifutil
12:16:49 AM      eth0  18763.00   5032.00  20686.42    478.30      0.00      0.00      0.00      0.00
12:16:49 AM        lo     14.00     14.00      1.36      1.36      0.00      0.00      0.00      0.00
12:16:49 AM   docker0      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00

12:16:49 AM     IFACE   rxpck/s   txpck/s    rxkB/s    txkB/s   rxcmp/s   txcmp/s  rxmcst/s   %ifutil
12:16:50 AM      eth0  19763.00   5101.00  21999.10    482.56      0.00      0.00      0.00      0.00
12:16:50 AM        lo     20.00     20.00      3.25      3.25      0.00      0.00      0.00      0.00
12:16:50 AM   docker0      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00

这个工具可以被用来检查网络接口的吞吐量:rxkB/s 和 txkB/s,以及是否达到限额。上面的例子中,eth0 接收的流量达到 22Mbytes/s,也即 176Mbits/sec(限额是 1Gbit/sec)

我们用的版本中还提供了 %ifutil 作为设备使用率(接收和发送的最大值)的指标。我们也可以用 Brendan 的 nicstat 工具计量这个值。一如 nicstat,sar 显示的这个值是很难精确取得的,在这个例子里面,它就没在正常的工作(0.00)。

9. sar -n TCP,ETCP 1

$ sar -n TCP,ETCP 1
Linux 3.13.0-49-generic (titanclusters-xxxxx)  07/14/2015    _x86_64_    (32 CPU)

12:17:19 AM  active/s passive/s    iseg/s    oseg/s
12:17:20 AM      1.00      0.00  10233.00  18846.00

12:17:19 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s
12:17:20 AM      0.00      0.00      0.00      0.00      0.00

12:17:20 AM  active/s passive/s    iseg/s    oseg/s
12:17:21 AM      1.00      0.00   8359.00   6039.00

12:17:20 AM  atmptf/s  estres/s retrans/s isegerr/s   orsts/s
12:17:21 AM      0.00      0.00      0.00      0.00      0.00

这是一些关键的 TCP 指标的汇总视图。这些包括:

active/s:每秒本地发起 TCP 连接数(例如,通过 connect())。

passive/s:每秒远程发起的 TCP 连接数(例如,通过 accept())。

retrans/s:每秒重传 TCP 次数。

active 和 passive 的连接数往往对于描述一个粗略衡量服务器负载是非常有用的:新接受的连接数(passive),下行连接数(active)。可以理解为 active 连接是对外的,而 passive 连接是对内的,虽然严格来说并不完全正确(例如,一个 localhost 到 localhost 的连接)。

重传是出现一个网络和服务器问题的一个征兆。其可能是由于一个不可靠的网络(例如,公网)造成的,或许也有可能是由于服务器过载并丢包。上面的例子显示了每秒只有一个新的 TCP 连接。

10. top

$ top
top - 00:15:40 up 21:56,  1 user,  load average: 31.09, 29.87, 29.92
Tasks: 871 total,   1 running, 868 sleeping,   0 stopped,   2 zombie
%Cpu(s): 96.8 us,  0.4 sy,  0.0 ni,  2.7 id,  0.1 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem:  25190241+total, 24921688 used, 22698073+free,    60448 buffers
KiB Swap:        0 total,        0 used,        0 free.   554208 cached Mem

   PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 20248 root      20   0  0.227t 0.012t  18748 S  3090  5.2  29812:58 java
  4213 root      20   0 2722544  64640  44232 S  23.5  0.0 233:35.37 mesos-slave
 66128 titancl+  20   0   24344   2332   1172 R   1.0  0.0   0:00.07 top
  5235 root      20   0 38.227g 547004  49996 S   0.7  0.2   2:02.74 java
  4299 root      20   0 20.015g 2.682g  16836 S   0.3  1.1  33:14.42 java
     1 root      20   0   33620   2920   1496 S   0.0  0.0   0:03.82 init
     2 root      20   0       0      0      0 S   0.0  0.0   0:00.02 kthreadd
     3 root      20   0       0      0      0 S   0.0  0.0   0:05.35 ksoftirqd/0
     5 root       0 -20       0      0      0 S   0.0  0.0   0:00.00 kworker/0:0H
     6 root      20   0       0      0      0 S   0.0  0.0   0:06.94 kworker/u256:0
     8 root      20   0       0      0      0 S   0.0  0.0   2:38.05 rcu_sched

top 命令包含了很多我们之前已经检查过的指标。可以方便的执行它来查看相比于之前的命令输出的结果有很大不同,这表明负载是可变的。

top 的一个缺点是,很难看到数据随时间变动的趋势。vmstat 和 pidstat 提供的滚动输出会更清楚一些。如果你不以足够快的速度暂停输出(Ctrl-S 暂停,Ctrl-Q 继续),一些间歇性问题的线索也可能由于被清屏而丢失。

原文地址:https://www.cnblogs.com/Keep-Ambition/p/8411141.html

时间: 2024-10-15 10:19:16

性能测试--十个命令迅速发现性能问题的相关文章

通过常用监控命令快速发现性能问题

命令大致如下: uptime dmesg | tail vmstat 1 mpstat -P ALL 1 pidstat 1 iostat -xz 1 free -m sar -n DEV 1 sar -n TCP,ETCP 1 top 1. uptime [[email protected] ~]# uptime 21:18:12 up 1 day, 18:36, 2 users, load average: 0.00, 0.01, 0.05 这是一种用来快速查看系统平均负载的方法,它表明了系

DB2日常维护——REORG TABLE命令优化数据库性能

[转]DB2日常维护——REORG TABLE命令优化数据库性能 一个完整的日常维护规范可以帮助 DBA 理顺每天需要的操作,以便更好的监控和维护数据库,保证数据库的正常.安全.高效运行,防止一些错误重复发生. 由于DB2使用CBO作为数据库的优化器,数据库对象的状态信息对数据库使用合理的 ACCESS PLAN至关重要.DB2 优化器使用目录统计信息来确定任何给定查询的最佳访问方案.如果有关表或索引的统计信息已过时或者不完整,则会导致优化器选择不是最佳的方案,并且会降低 执行查询的速度.当数据

提高SDN控制器的拓扑发现性能(通过改进逻辑)

最近做实验,发现ryu的拓扑发现性能不高,因此阅读了ryu拓扑发现源码,查阅了相关论文,改进了ryu的拓扑发现性能,改写了代码,并且重新做了实验,发现改进的拓扑发现模块能力有所增强,但是还是有局限性,现在先对前面的工作做个总结,以后有时间了继续改进. 一.LLDP拓扑发现原理 传统网络中的链路发现协议为LLDP(Link Layer Discovery Protocol),LLDP允许局域网中的结点告诉其他结点他自己的capabilities和neighbours.在传统以太网交换机中,交换机从

性能测试时需要关注哪些性能

对一个软件做性能测试时需要关注哪些性能呢? 我们想想在软件设计.部署.使用.维护中一共有哪些角色的参与,然后再考虑这些角色各自关注的性能点是什么,作为一个软件性能测试工程师,我们又该关注什么? 1.站在用户的角度分析一下,用户需要关注哪些性能. 对于用户来说,当点击一个按钮.链接或发出一条指令开始,到系统把结果已用户感知的形式展现出来为止,这个过程所消耗的时间是用户对这个软件性能的直观印象.也就是我们所说的响应时间,当响应时间较小时,用户体验是很好的,当然用户体验的响应时间包括个人主观因素和客观

性能测试四十五:性能测试策略

1.项目具体需求,及业务场景:关注真实用户会是怎样的一个业务场景,确定用户的用户习惯. 2.指标:响应时间在多少以内,并发数多少,tps多少,总tps多少,稳定性交易总量多少,事务成功率,交易波动范围,稳定运行时长,资源利用率,测哪些交易,哪些接口,测试哪些场景. 3.环境:生产环境服务器数量,测试环境服务器数量,按照资源配比得出测试指标. 4.协议:系统用什么协议进行通讯. 5.压力机数量:如果并发用户数太多,需要把压力发到不同的压力机,不然可能会存在压力机瓶颈问题,导致tps和响应时间抖动.

性能测试学习第十天-----性能案例分析之数据库性能问题

一.现象 /pinter/case/slow?userName=xxx tps很低,响应时间很长,数据库服务器cpu很高(接近100%),应用服务器负载比较低 索引 索引是对数据库表中一列或多列的值进行排序的一种结构,存储了表中的关键字段,使用索引可快速访问数据库表中的特定信息.类似于书籍中的目录.二.分析 数据库服务器CPU高,一般都是因为SQL执行效率低导致的,可能有三方面原因 1.数据库表缺少必要的索引: 2.索引不生效 3.SQL不够优化 三.慢查询 在MySQL中,可以监控SQL语句的

vmstat和iostat命令进行Linux性能监控

这是我们正在进行的Linux命令和性能监控系列的一部分.vmstat和iostat两个命令都适用于所有主要的类unix系统(Linux/unix/FreeBSD/Solaris). 如果vmstat和iostat命令在你的系统中不可用,请安装sysstat软件包.vmstat,sar和iostat命令都包含在sysstat(系统监控工具)软件包中.iostat命令生成CPU和所有设备的统计信息.你可以从这个连接中下载源代码包编译安装sysstat,但是我们建议通过YUM命令进行安装. 在Linu

性能测试(六)前端性能优化方法

日常工作和生活中,我们经常利用浏览器去打开一些URL来获取我们所需的资源,那么作为一个开发者或者性能测试工程师,如何去测试并提升优化前端的性能呢? 一.浏览器打开URL和方式和过程 不同浏览器工作方式不完全一样,大体来讲,浏览器的核心是浏览器引擎:不同浏览器对W3C的规范支持不尽相同,在具体功能的实现上也不完全一致. 1.连接到URL所在的服务器 用户在浏览器地址栏输入URL,打开URL时,浏览器首先寻找该URL所在的服务器.通过向DNS服务器查询,获取该URL所在网站的IP地址,然后浏览器向该

性能测试篇 :Jmeter监控服务器性能

转载:http://www.cnblogs.com/chengtch/p/6079262.html jmeter也可以像loadrunner一样监控服务器CPU.内存等性能参数,不过需要安装一些插件  1.下载需要的jmeter插件 如图上面两个是jmeter插件,可以再下面的链接中下载: https://jmeter-plugins.org/downloads/old 第三个是放在服务器中的,可在下面的度盘中下载: http://pan.baidu.com/share/link?shareid