[uoj#34] [洛谷P3803] 多项式乘法(FFT)

新技能——FFT。

可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换。

其中最关键的一点便为单位复数根,有神奇的折半性质。

多项式乘法(即为卷积)的常见形式:

\[
C_n=\sum\limits_{i=0}^n A_iB_{n-i}
\]

基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\)

随后点值 \(O(n)\) 进行乘法运算

最后将点值表达 -> 系数表达 \(O(nlogn)\)


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>

using namespace std;

const int N = 2100005;
const double pi = 3.1415926535897932384626433832795;

struct c{
    double r,i;
    c() { r=i=0.0; }
    c(double x,double y) { r=x; i=y; }
    c operator + (const c &b) { return c(r+b.r,i+b.i); }
    c operator += (const c &b) { return *this=*this+b; }
    c operator - (const c &b) { return c(r-b.r,i-b.i); }
    c operator -= (const c &b) { return *this=*this-b; }
    c operator * (const c &b) { return c(r*b.r-i*b.i,r*b.i+b.r*i); }
    c operator *= (const c &b) { return *this=*this*b; }
}a[N],b[N],x[N];

int l;
int r[N];
void fft(c A[],int ty){
    for(int i=0;i<l;i++) x[r[i]]=A[i];
    for(int i=0;i<l;i++) A[i]=x[i];
    for(int i=2;i<=l;i<<=1){
        c wn(cos(pi*2/i),ty*sin(pi*2/i));
        for(int j=0;j<l;j+=i){
            c w(1,0);
            for(int k=j;k<j+i/2;k++){
                c t=A[k+i/2]*w;
                A[k+i/2]=A[k]-t;
                A[k]+=t;
                w*=wn;
            }
        }
    }
}

int n,m;

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++) scanf("%lf",&a[i].r);
    for(int i=0;i<=m;i++) scanf("%lf",&b[i].r);

    l=1;
    while(l<=n+m) l<<=1;
    for(int i=0;i<l;i++) r[i]=(r[i>>1]>>1)|((i&1)*(l>>1));

    fft(a,1);fft(b,1);
    for(int i=0;i<l;i++)
        a[i]*=b[i];
    fft(a,-1);

    for(int i=0;i<n+m;i++)
        printf("%d ",int(a[i].r/l+0.5));
    printf("%d",int(a[n+m].r/l+0.5));

    return 0;
}

原文地址:https://www.cnblogs.com/lindalee/p/8511814.html

时间: 2024-10-08 01:29:07

[uoj#34] [洛谷P3803] 多项式乘法(FFT)的相关文章

洛谷1067 多项式输出 解题报告

洛谷1067 多项式输出 本题地址:http://www.luogu.org/problem/show?pid=1067 题目描述 一元 n 次多项式可用如下的表达式表示:其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该多项式: 1. 多项式中自变量为 x,从左到右按照次数递减顺序给出多项式. 2. 多项式中只包含系数不为 0 的项. 3. 如果多项式 n 次项系数为正,则多项式开头不出现“+”号,如果多项式 n 次项系

多项式乘法(FFT)学习笔记

------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$

洛谷P3803 【模板】多项式乘法(FFT)

P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1

洛谷.3803.[模板]多项式乘法(FFT)

题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(-1); int n,m; struct Complex { double

洛谷P3803 【模板】多项式乘法(FFT) 【fft】

题目 这是一道FFT模板题 输入格式 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输出格式 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输入样例 一行n+m+1个数字,从低到高表示F(x)?G(x)的系数. 输出样例 1 2 1 2 1 2 1 提示 1 4 5 2 题解 表示迭代还不是很懂 只好背模板... #include<iostream> #incl

UOJ #34 多项式乘法 FFT快速傅立叶变换

题目大意:这是一道模板题. CODE: #include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 1000010 using namespace std; const double PI = acos(-1.0); struct Complex{ double x,y; Complex(dou

luogu3803 多项式乘法 (FFT)

FFT讲解传送门 简单记一下做法: 1.算法流程:两式的系数表达转化为点值表达(O(nlogn))->利用点值表达使两式相乘(O(n))->将结果的点值表达转化回系数表达(O(nlogn)) 2.做法: $$目标:把一个n项多项式F(x)=\sum_{i=0}^{n-1}a_ix^i转化为\{(w^k_n,y_k)\}的点值表达,其中w^k_n为n次单位根的k次方$$ 不妨设n为2的幂次,如果不是,则可以补上系数为0的高次项 $$将a_ix^i按照幂次奇偶性分组,得到F(x)=(a_0x^0+

洛谷 P1067 多项式输出

题目描述 一元 n 次多项式可用如下的表达式表示: 其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该多项式: 1. 多项式中自变量为 x,从左到右按照次数递减顺序给出多项式. 2. 多项式中只包含系数不为 0 的项. 3. 如果多项式 n 次项系数为正,则多项式开头不出现“+”号,如果多项式 n 次项系 数为负,则多项式以“-”号开头. 4. 对于不是最高次的项,以“+”号或者“-”号连接此项与前一项,分别表示此项 系数

洛谷——P1067 多项式输出

P1067 多项式输出 题目描述 一元 n 次多项式可用如下的表达式表示: 其中,aixi称为 i 次项,ai 称为 i 次项的系数.给出一个一元多项式各项的次数和系数,请按照如下规定的格式要求输出该多项式: 1. 多项式中自变量为 x,从左到右按照次数递减顺序给出多项式. 2. 多项式中只包含系数不为 0 的项. 3. 如果多项式 n 次项系数为正,则多项式开头不出现“+”号,如果多项式 n 次项系 数为负,则多项式以“-”号开头. 4. 对于不是最高次的项,以“+”号或者“-”号连接此项与前