Miller-Rabin素数测试算法

由费马小定理可以知道,若p是素数且a是整数,则满足a^p==a(mod p)。若存在正整数a不满足a^p==a(mod p),那么n是合数。

定义:令a是一个正整数,若p是合数且满足a^p==a(mod p),则p称为以a为基的伪素数。

Miller-Rabin素数测试算法原理: 假如p是素数,且(a,p)==1,(a为任意小于p的正整数),那么a^p-1==1(mod p)。如果a^p-1==1(mod p),

则可认为n是素数,取多个底进行试验,次数越多,n为素数概率越大。(我的个人理解多次试验为p换基,使之成为伪素数的可能性大大减小)。

Miller-Rabin测试:不断选取不超过n-1的基b(s次),计算是否每次都有bn-1 ≡ 1(mod n),若每次都成立则n是素数,否则为合数。)

转载:说Miller-Rabin测试以前先说两个比较高效的求a*b% n 和 ab %n 的函数,这里都是用到二进制思想,将b拆分成二进制,然后与a相加(相乘)

// a * b % n
//例如: b = 1011101那么a * b mod n = (a * 1000000 mod n + a * 10000 mod n + a * 1000 mod n + a * 100 mod n + a * 1 mod n) mod n 

ll mod_mul(ll a, ll b, ll n) {
    ll res = 0;
    while(b) {
        if(b&1)    res = (res + a) % n;
        a = (a + a) % n;//a=(a<<1)%n
        b >>= 1;
    }
    return res;
}

这代码很棒,以后计算a*b时,如果里面有一个数很大,则可以选择上面的算法,(nlogn)的时间复杂度。

//a^b % n
//同理
ll mod_exp(ll a, ll b, ll n) {
    ll res = 1;
    while(b) {
        if(b&1)    res = mod_mul(res, a, n);
        a = mod_mul(a, a, n);
        b >>= 1;
    }
    return res;
}

快速幂,没什么好说的。

核心代码:

开始程序时需加srand(time(NULL));

bool miller_rabin(ll n)
{
    for(int i=1; i<=N; i++) //N为你打算测试的次数,N(10~20)
    {
        ll a=random(n-2)+1;//需头文件stdlib.h,random(X)产生0~X的随机数,+1产生1~n-1
        if(mod_exp(a,n-1,mod)!=1)
        {
            "合数";
        }
    }
}

注意,MIller-Rabin测试是概率型的,不是确定型的,不过由于多次运行后出错的概率非常小,所以实际应用还是可行的。(一次Miller-Rabin测试其成功的概率为3/4)

二次探测定理:(改进)

一个合数n,若对所有满足(b,n)=1的正整数b都有b^n-1==1(mod n)成立,(上面的反例,但出现这种数的几率不大),则称之为卡迈克尔数。

 二次探测 如果p是奇素数,则 x2 ≡ 1(mod p)的解为 x = 1 || x = p - 1(mod p);

可以利用二次探测定理在实现Miller-Rabin上添加一些细节,具体实现如下:

bool miller_rabin(ll n) {
    if(n == 2 || n == 3 || n == 5 || n == 7 || n == 11)    return true;
    if(n == 1 || !(n%2) || !(n%3) || !(n%5) || !(n%7) || !(n%11))    return false;

    ll x, pre, u;
    int i, j, k = 0;
    u = n - 1;    //要求x^u % n

    while(!(u&1)) {    //如果u为偶数则u右移,用k记录移位数
        k++; u >>= 1;
    }

    srand((ll)time(0));
    for(i = 0; i < S; ++i) {    //进行S次测试
        x = rand()%(n-2) + 2;    //在[2, n)中取随机数
        if((x%n) == 0)    continue;

        x = mod_exp(x, u, n);    //先计算(x^u) % n,
        pre = x;
        for(j = 0; j < k; ++j) {    //把移位减掉的量补上,并在这地方加上二次探测
            x = mod_mul(x, x, n);
            if(x == 1 && pre != 1 && pre != n-1)    return false;    //二次探测定理,这里如果x = 1则pre 必须等于 1,或则 n-1否则可以判断不是素数
            pre = x;
        }
        if(x != 1)    return false;    //费马小定理
    }
    return true;
}

前边这个算法经过测试还是比较靠谱的,可以用作模板。

效率上,VC 10 RELEASE 模式下,采用三次循环 M - R,测试第 19999 个素数 224729 时,快除法快 而测试第 20000 个素数 224737 时,M - R 法快

因此,为保证最高效,测试大数 n 时,可以先对其使用前 19999 个素数进行快除法排除,而后再使用 M - R 测试。

AC_Von 原创,转载请注明出处:http://www.cnblogs.com/vongang/archive/2012/03/15/2398626.html

时间: 2024-11-06 16:52:30

Miller-Rabin素数测试算法的相关文章

51nod 1106 质数检测(miller rabin 素数测试.)

1106 质数检测 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No". Input 第1行:一个数N,表示正整数的数量.(1 <= N <= 1000) 第2 - N + 1行:每行1个数(2 <= S[i] <= 10^9) Output 输出共N行,每行为 Yes 或 No. Input示例 5 2 3 4 5 6

POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

HDU1164_Eddy&amp;#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime

POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数测试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime

POJ2429_GCD &amp;amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

Miller_Rabin素数测试算法模板对比

昨天在USACO做了一道判断素数的题,就想着学习一下Miller_Rabin素数测试算法,在网上找到两种模版,第一种十分简洁,运行速度也很快,但是会判错极少的几个非素数:第二种比较麻烦,运行速度很慢,所以我便想找到第一种模版不能判断的非素数特判一下,结果用了一天,电脑只找到10^8以下的,10^9内还有2个没找到,但正确的模版运行速度太慢,我的电脑又太渣,耗不起时间了,姑且先这样,等以后有深入理解有更好的方法再更新一下. 第一种:源自吉林大学ACM模版 刚开始用的是随机数测试,我想到以前了解过只

POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

素数测试算法(基于Miller-Rabin的MC算法) // Fermat素数测试法

在以往判断一个数n是不是素数时,我们都是采用i从2到sqrt(n)能否整除n.如果能整除,则n是合数;否则是素数.但是该算法的时间复杂度为O(sqrt(n)),当n较大时,时间性能很差,特别是在网络安全和密码学上一般都是需要很大的素数.而从目前来看,确定性算法判断素数的性能都不好,所以可以用MC概率算法来解决,其中Miller Rabin算法就是其中的很经典的解决方法.下面首先介绍下相关的数学理论. 数学原理 Fermat小定理:若n是素数,则对所有1≤a≤n-1的整数a,有a^(n-1)mod