概要
这个类在 Oracle 的官方文档里是查不到的,但是确实在 OpenJDK
的源代码里出现了,Arrays
中的 sort
函数用到了这个用于排序的类。它将归并排序(merge
sort) 与插入排序(insertion sort) 结合,并进行了一些优化。对于已经部分排序的数组,时间复杂度远低于 O(n log(n))
,最好可达 O(n)
,对于随机排序的数组,时间复杂度为 O(nlog(n))
,平均时间复杂度 O(nlog(n))
。强烈建议在看此文前观看
Youtube 上的 可视化Timsort,看完后马上就会对算法的执行过程有一个感性的了解。然后,可以阅读 Wikipeida 词条:Timsort。
这个排序算法在 Java SE 7, Android, GNU Octave 中都得到了应用。另外,文 后也推荐了两篇非常好的文章,如果想搞明白 TimSort
最好阅读一下。
此类是对 Python
中,由 Tim
实现的排序算法的改写。实现来自:listobject.c.
Peters
原始论文来自:
"Optimistic Sorting and Information Theoretic Complexity" Peter
McIlroy SODA (Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms), pp 467-474, Austin, Texas, 25-27 January 1993.
实现
- sort
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c) { if (c == null) { Arrays.sort(a, lo, hi); return; } rangeCheck(a.length, lo, hi); int nRemaining = hi - lo; if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi, c); binarySort(a, lo, hi, lo + initRunLen, c); return; } /** * March over the array once, left to right, finding natural runs, * extending short natural runs to minRun elements, and merging runs * to maintain stack invariant. */ TimSort<T> ts = new TimSort<>(a, c); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi, c); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0); // Merge all remaining runs to complete sort assert lo == hi; ts.mergeForceCollapse(); assert ts.stackSize == 1; }
下面分段解释:
if (c == null) { Arrays.sort(a, lo, hi); return; }
如果没有提供 Comparaotr
的话,会调用 Arrays.sort
中的函数,背后其实又会调用 ComparableTimSort
,它是对没有提供Comparator
,但是实现了 Comparable
的元素进行排序,算法和这里的是一样的,就是元素比较方法不一样。
后面是算法的主体:
if (nRemaining < 2) return; // Arrays of size 0 and 1 are always sorted // If array is small, do a "mini-TimSort" with no merges if (nRemaining < MIN_MERGE) { int initRunLen = countRunAndMakeAscending(a, lo, hi, c); binarySort(a, lo, hi, lo + initRunLen, c); return; }
- 如果元素个数小于2,直接返回,因为这两个元素已经排序了
- 如果元素个数小于一个阈值(默认为),调用
binarySort
,这是一个不包含合并操作的mini-TimSort
。 - 在关键的
do-while
循环中,不断地进行排序,合并,排序,合并,一直到所有数据都处理完。
TimSort<T> ts = new TimSort<>(a, c); int minRun = minRunLength(nRemaining); do { ... } while (nRemaining != 0);
- minRunLength
这个函数会找出 run
的最小长度,少于这个长度就需要对其进行扩展。
static int minRunLength(int n) { assert n >= 0; int r = 0; // Becomes 1 if any 1 bits are shifted off while (n >= MIN_MERGE) { r |= (n & 1); n >>= 1; } return n + r; }
先看看 n 与 minRunLength(n) 对应关系
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 16
33 17
34 17
35 18
36 18
37 19
38 19
39 20
40 20
41 21
42 21
43 22
44 22
45 23
46 23
47 24
48 24
49 25
50 25
51 26
52 26
53 27
54 27
55 28
56 28
57 29
58 29
59 30
60 30
61 31
62 31
63 32
64 16
65 17
66 17
67 17
68 17
69 18
70 18
71 18
72 18
73 19
74 19
75 19
76 19
77 20
78 20
79 20
80 20
81 21
82 21
83 21
84 21
85 22
86 22
87 22
88 22
89 23
90 23
91 23
92 23
93 24
94 24
95 24
96 24
97 25
98 25
99 25
...
看这个估计可以猜出来函数的功能了,下面解释一下。
这个函数根据 n 计算出对应的 natural run
的最小长度。MIN_MERGE
默认为 32
,如果n小于此值,那么返回 n
本身。否则会将 n
不断地右移,直到少于 MIN_MERGE
,同时记录一个 r
值,r
代表最后一次移位n时,n最低位是0还是1。 最后返回 n + r
,这也意味着只保留最高的 5 位,再加上第六位。
- do-while
我们再看看 do-while
中发生了什么。
TimSort<T> ts = new TimSort<>(a, c); int minRun = minRunLength(nRemaining); do { // Identify next run int runLen = countRunAndMakeAscending(a, lo, hi, c); // If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; } // Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen; } while (nRemaining != 0);
countRunAndMakeAscending
会找到一个 run
,这个 run
必须是已经排序的,并且函数会保证它为升序,也就是说,如果找到的是一个降序的,会对其进行翻转。
简单看一眼这个函数:
- countRunAndMakeAscending
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi, Comparator<? super T> c) { assert lo < hi; int runHi = lo + 1; if (runHi == hi) return 1; // Find end of run, and reverse range if descending if (c.compare(a[runHi++], a[lo]) < 0) { // Descending while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0) runHi++; reverseRange(a, lo, runHi); } else { // Ascending while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0) runHi++; } return runHi - lo; }
注意其中的 reverseRange
就是我们说的翻转。
现在,有必要看一下 binarySort
了。
private static <T> void binarySort(T[] a, int lo, int hi, int start, Comparator<? super T> c) { assert lo <= start && start <= hi; if (start == lo) start++; for ( ; start < hi; start++) { T pivot = a[start]; // Set left (and right) to the index where a[start] (pivot) belongs int left = lo; int right = start; assert left <= right; /* * Invariants: * pivot >= all in [lo, left). * pivot < all in [right, start). */ while (left < right) { int mid = (left + right) >>> 1; if (c.compare(pivot, a[mid]) < 0) right = mid; else left = mid + 1; } assert left == right; /* * The invariants still hold: pivot >= all in [lo, left) and * pivot < all in [left, start), so pivot belongs at left. Note * that if there are elements equal to pivot, left points to the * first slot after them -- that‘s why this sort is stable. * Slide elements over to make room for pivot. */ int n = start - left; // The number of elements to move // Switch is just an optimization for arraycopy in default case switch (n) { case 2: a[left + 2] = a[left + 1]; case 1: a[left + 1] = a[left]; break; default: System.arraycopy(a, left, a, left + 1, n); } a[left] = pivot; } }
我们都听说过 binarySearch
,但是这个 binarySort
又是什么呢? binarySort
对数组 a[lo:hi]
进行排序,并且a[lo:start]
是已经排好序的。算法的思路是对 a[start:hi]
中的元素,每次使用 binarySearch
为它在 a[lo:start]
中找到相应位置,并插入。
回到 do-while
循环中,看看 binarySearch
的作用:
// If run is short, extend to min(minRun, nRemaining) if (runLen < minRun) { int force = nRemaining <= minRun ? nRemaining : minRun; binarySort(a, lo, lo + force, lo + runLen, c); runLen = force; }
所以,我们明白了,binarySort
对 run
进行了扩展,并且扩展后,run
仍然是有序的。
随后:
// Push run onto pending-run stack, and maybe merge ts.pushRun(lo, runLen); ts.mergeCollapse(); // Advance to find next run lo += runLen; nRemaining -= runLen;
当前的 run
位于 a[lo:runLen]
,将其入栈,然后将栈中的 run
合并。
- pushRun
private void pushRun(int runBase, int runLen) { this.runBase[stackSize] = runBase; this.runLen[stackSize] = runLen; stackSize++; }
入栈过程简单明了,不解释。
再看另一个关键函数,合并操作。如果你看过文章开头提到的对 Timsort
进行可视化的视频,一定会对合并操作印象深刻。它会把已经排序的 run
合并成一个大 run
,此大 run
也会排好序。
/** * Examines the stack of runs waiting to be merged and merges adjacent runs * until the stack invariants are reestablished: * * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1] * 2. runLen[i - 2] > runLen[i - 1] * * This method is called each time a new run is pushed onto the stack, * so the invariants are guaranteed to hold for i < stackSize upon * entry to the method. */ private void mergeCollapse() { while (stackSize > 1) { int n = stackSize - 2; if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) { if (runLen[n - 1] < runLen[n + 1]) n--; mergeAt(n); } else if (runLen[n] <= runLen[n + 1]) { mergeAt(n); } else { break; // Invariant is established } } }
合并的过程会一直循环下去,一直到注释里提到的循环不变式得到满足。
- mergeAt
mergeAt
会把栈顶的两个 run
合并起来:
/** * Merges the two runs at stack indices i and i+1. Run i must be * the penultimate or antepenultimate run on the stack. In other words, * i must be equal to stackSize-2 or stackSize-3. * * @param i stack index of the first of the two runs to merge */ private void mergeAt(int i) { assert stackSize >= 2; assert i >= 0; assert i == stackSize - 2 || i == stackSize - 3; int base1 = runBase[i]; int len1 = runLen[i]; int base2 = runBase[i + 1]; int len2 = runLen[i + 1]; assert len1 > 0 && len2 > 0; assert base1 + len1 == base2; /* * Record the length of the combined runs; if i is the 3rd-last * run now, also slide over the last run (which isn‘t involved * in this merge). The current run (i+1) goes away in any case. */ runLen[i] = len1 + len2; if (i == stackSize - 3) { runBase[i + 1] = runBase[i + 2]; runLen[i + 1] = runLen[i + 2]; } stackSize--; /* * Find where the first element of run2 goes in run1. Prior elements * in run1 can be ignored (because they‘re already in place). */ int k = gallopRight(a[base2], a, base1, len1, 0, c); assert k >= 0; base1 += k; len1 -= k; if (len1 == 0) return; /* * Find where the last element of run1 goes in run2. Subsequent elements * in run2 can be ignored (because they‘re already in place). */ len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c); assert len2 >= 0; if (len2 == 0) return; // Merge remaining runs, using tmp array with min(len1, len2) elements if (len1 <= len2) mergeLo(base1, len1, base2, len2); else mergeHi(base1, len1, base2, len2); }
由于要合并的两个 run
是已经排序的,所以合并的时候,有会特别的技巧。假设两个 run
是 run1,run2
,先用 gallopRight
在 run1
里使用 binarySearch
查找 run2
的位置
首元素k
, 那么 run1
中 k
前面的元素就是合并后最小的那些元素。然后,在 run2
中查找 run1
的位置
尾元素len2
,那么 run2
中 len2
后面的那些元素就是合并后最大的那些元素。最后,根据len1
与 len2
大小,调用 mergeLo
或者 mergeHi
将剩余元素合并。
gallop
和 merge
就不展开了。
另外,强烈推荐阅读文后的两篇文章,第一篇可以看到 JDK7 中更换排序算法后可能引发的问题,另外,也会介绍源代码,并给出具体的例子。第二篇会告诉你如何对一个 MergeSort
进行优化,介绍了 TimSort
背后的思想。
推荐阅读
OpenJDK 源码阅读之 TimSort,布布扣,bubuko.com