bzoj 1767: [Ceoi2009]harbingers

Description

给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择: 1.继续走到下个城市 2.让这个城市的邮递员替他出发。 每个邮递员出发需要一个准备时间W[I],他们的速度是V[I],表示走一公里需要多少分钟。 现在要你求出每个城市的邮递员到capital的最少时间(不一定是他自己到capital,可以是别人帮他) N<=100000 3 ≤ N ≤ 100 000 0 ≤ Si≤ 10^9 1 ≤ Vi≤ 10^9 The length of each road will not exceed 10 000 For 20% of the tests, N ≤ 2 500 For 50% of the tests, each town will have at most 2 adjacent roads (i.e., the graph of roads will be a line)

Input

N 以下N-1行A,B,C三个数表示A,B之间有一条长为C的边。 再N行每行两数Wi,Vi 输出有一行N-1个数表示如题所述。

f[w]=W[w]+V[w]*dep[w]+min(f[u]-dep[u]*V[w]) u在w到根的路径上

树上的斜率优化,两维分别是深度dep和答案f,dfs并用单调栈记录当前点到根路径上的凸包,三分得到决策点

为保证时间复杂度,单调栈pop时要用二分确定弹出的元素个数,并支持撤销

#include<cstdio>
typedef long double ld;
typedef long long i64;
const int N=100007;
int n,es[N*2],enx[N*2],ev[N*2],e0[N],ep=2;
int c[N],v[N],ss[N],sp=0;
i64 f[N],dep[N];
int _(){
    int x;
    scanf("%d",&x);
    return x;
}
bool chk(int a,int b,int w){
    return (f[b]-f[a])/ld(dep[b]-dep[a])>(f[w]-f[b])/ld(dep[w]-dep[b]);
}
void f1(int w,int pa){
    if(sp){
        int L=1,R=sp,M;
        while(L<R){
            M=(L+R)>>1;
            int a=ss[M],b=ss[M+1];
            if(f[a]-f[b]<v[w]*(dep[a]-dep[b]))R=M;
            else L=M+1;
        }
        f[w]=c[w]+v[w]*(dep[w]-dep[ss[L]])+f[ss[L]];
    }
    int L=1,R=sp,M;
    if(L<R&&!chk(ss[R-1],ss[R],w))L=R;
    while(L<R){
        M=(L+R)>>1;
        if(chk(ss[M],ss[M+1],w))R=M;
        else L=M+1;
    }
    L=sp;
    M=ss[sp=R+1];
    ss[sp]=w;
    for(int i=e0[w];i;i=enx[i]){
        int u=es[i];
        if(u==pa)continue;
        dep[u]=dep[w]+ev[i];
        f1(u,w);
    }
    ss[sp]=M;
    sp=L;
}
int main(){
    n=_();
    for(int i=1,a,b,c;i<n;++i){
        a=_();b=_();c=_();
        es[ep]=b;enx[ep]=e0[a];ev[ep]=c;e0[a]=ep++;
        es[ep]=a;enx[ep]=e0[b];ev[ep]=c;e0[b]=ep++;
    }
    for(int i=2;i<=n;++i){
        c[i]=_();
        v[i]=_();
    }
    f1(1,0);
    for(int i=2;i<=n;++i)printf("%lld%c",f[i],i==n?10:32);
    return 0;
}
时间: 2024-10-11 08:23:19

bzoj 1767: [Ceoi2009]harbingers的相关文章

bzoj1767[Ceoi2009]harbingers 斜率优化dp

1767: [Ceoi2009]harbingers Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 421  Solved: 112[Submit][Status][Discuss] Description 给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择: 1.继续走到下个城市 2.让这个城市的邮递员替他出发. 每个邮递员出发需要一个准备时间W[I],他们的速度是V[I]

[Bzoj1767][Ceoi2009]harbingers (树上斜率优化)

1767: [Ceoi2009]harbingers Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 451  Solved: 120[Submit][Status][Discuss] Description 给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可以有两种选择: 1.继续走到下个城市 2.让这个城市的邮递员替他出发. 每个邮递员出发需要一个准备时间W[I],他们的速度是V[I]

BZOJ1767: [Ceoi2009]harbingers

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1767 题解:果然NOI2014购票出了原题233 虽然加上距离限制之后麻烦了好多... 不过没有限制的话,直接把整个x-rt的凸包建出来,然后每个点都去二分即可. 代码: 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cmath> 4 #include<cstring> 5 #include<a

●BZOJ 3672 [Noi2014]购票

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3672 题解: 斜率优化DP,点分治(树上CDQ分治...) 这里有一个没有距离限制的简单版:BZOJ 1767 [Ceoi2009]harbingers 定义$DP[i]$为从i出发到1号点的最小花费,$dis_i$为i到1号点的距离: 转移: $DP[i]=min(DP[j]+(dis_i-dis_j)P_j)+Q_i$ $\quad=min(DP[j]-dis_jP_i)+dis_iP

BZOJ 1013: [JSOI2008]球形空间产生器sphere

二次联通门 : BZOJ 1013: [JSOI2008]球形空间产生器sphere /* BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元 QAQ SB的我也能终于能秒题了啊 设球心的坐标为(x,y,z...) 那么就可以列n+1个方程,化化式子高斯消元即可 */ #include <cstdio> #include <iostream> #include <cstring> #define rg register #define Max

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比

洛谷 P2709 BZOJ 3781 小B的询问

题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小B请你帮助他回答询问. 输入输出格式 输入格式: 第一行,三个整数N.M.K. 第二行,N个整数,表示小B的序列. 接下来的M行,每行两个整数L.R. 输出格式: M行,每行一个整数,其中第i行的整数表示第i个询问的答案. 输入输出样例 输入样例#1: 6 4 3 1 3 2 1 1 3

BZOJ 1012: [JSOI2008]最大数maxnumber(线段树)

012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MB Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插入操作.语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列