PageRank算法简介及Map-Reduce实现

  PageRank对网页排名的算法,曾是Google发家致富的法宝。以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理。

一、什么是pagerank

  PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google
产品经理),因为他是这个算法的发明者之一,还是google
CEO(^_^)。PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序。它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事、漫无目的地在网页上跳来跳去,PageRank就是估计这个悠闲的上网者分布在各个网页上的概率。

二、最简单pagerank模型

  互联网中的网页可以看出是一个有向图,其中网页是结点,如果网页A有链接到网页B,则存在一条有向边A->B,下面是一个简单的示例:

  这个例子中只有四个网页,如果当前在A网页,那么悠闲的上网者将会各以1/3的概率跳转到B、C、D,这里的3表示A有3条出链,如果一个网页有k条出链,那么跳转任意一个出链上的概率是1/k,同理D到B、C的概率各为1/2,而B到C的概率为0。一般用转移矩阵表示上网者的跳转概率,如果用n表示网页的数目,则转移矩阵M是一个n*n的方阵;如果网页j有k个出链,那么对每一个出链指向的网页i,有M[i][j]=1/k,而其他网页的M[i][j]=0;上面示例图对应的转移矩阵如下:

  初试时,假设上网者在每一个网页的概率都是相等的,即1/n,于是初试的概率分布就是一个所有值都为1/n的n维列向量V0,用V0去右乘转移矩阵M,就得到了第一步之后上网者的概率分布向量MV0,(nXn)*(nX1)依然得到一个nX1的矩阵。下面是V1的计算过程:

  注意矩阵M中M[i][j]不为0表示用一个链接从j指向i,M的第一行乘以V0,表示累加所有网页到网页A的概率即得到9/24。得到了V1后,再用V1去右乘M得到V2,一直下去,最终V会收敛,即Vn=MV(n-1),上面的图示例,不断的迭代,最终V=[3/9,2/9,2/9,2/9]‘:

三、终止点问题

  上述上网者的行为是一个马尔科夫过程的实例,要满足收敛性,需要具备一个条件:

  • 图是强连通的,即从任意网页可以到达其他任意网页:

  互联网上的网页不满足强连通的特性,因为有一些网页不指向任何网页,如果按照上面的计算,上网者到达这样的网页后便走投无路、四顾茫然,导致前面累计得到的转移概率被清零,这样下去,最终的得到的概率分布向量所有元素几乎都为0。假设我们把上面图中C到A的链接丢掉,C变成了一个终止点,得到下面这个图:

  对应的转移矩阵为:

  连续迭代下去,最终所有元素都为0:  

四、陷阱问题

  另外一个问题就是陷阱问题,即有些网页不存在指向其他网页的链接,但存在指向自己的链接。比如下面这个图:

  上网者跑到C网页后,就像跳进了陷阱,陷入了漩涡,再也不能从C中出来,将最终导致概率分布值全部转移到C上来,这使得其他网页的概率分布值为0,从而整个网页排名就失去了意义。如果按照上面图对应的转移矩阵为: 

  不断的迭代下去,就变成了这样:

五、解决终止点问题和陷阱问题

  上面过程,我们忽略了一个问题,那就是上网者是一个悠闲的上网者,而不是一个愚蠢的上网者,我们的上网者是聪明而悠闲,他悠闲,漫无目的,总是随机的选择网页,他聪明,在走到一个终结网页或者一个陷阱网页(比如两个示例中的C),不会傻傻的干着急,他会在浏览器的地址随机输入一个地址,当然这个地址可能又是原来的网页,但这里给了他一个逃离的机会,让他离开这万丈深渊。模拟聪明而又悠闲的上网者,对算法进行改进,每一步,上网者可能都不想看当前网页了,不看当前网页也就不会点击上面的连接,而上悄悄地在地址栏输入另外一个地址,而在地址栏输入而跳转到各个网页的概率是1/n。假设上网者每一步查看当前网页的概率为a,那么他从浏览器地址栏跳转的概率为(1-a),于是原来的迭代公式转化为:

  现在我们来计算带陷阱的网页图的概率分布:

  重复迭代下去,得到:

  可以看到C虽然占了很大一部分pagerank值,但其他网页页获得的一些值,因此C的链接结构,它的权重确实应该会大些。

六、用Map-reduce计算Page Rank

  上面的演算过程,采用矩阵相乘,不断迭代,直到迭代前后概率分布向量的值变化不大,一般迭代到30次以上就收敛了。真的的web结构的转移矩阵非常大,目前的网页数量已经超过100亿,转移矩阵是100亿*100亿的矩阵,直接按矩阵乘法的计算方法不可行,需要借助Map-Reduce的计算方式来解决。实际上,google发明Map-Reduce最初就是为了分布式计算大规模网页的pagerank,Map-Reduce的pagerank有很多实现方式,我这里计算一种简单的。

  考虑转移矩阵是一个很多的稀疏矩阵,我们可以用稀疏矩阵的形式表示,我们把web图中的每一个网页及其链出的网页作为一行,这样第四节中的web图结构用如下方式表示:

1 A    B    C    D
2 B A D
3 C C
4 D B C

  A有三条出链,分布指向A、B、C,实际上,我们爬取的网页结构数据就是这样的。

  1、Map阶段

  Map操作的每一行,对所有出链发射当前网页概率值的1/k,k是当前网页的出链数,比如对第一行输出<B,1/3*1/4>,<C,1/3*1/4>,<D,1/3*1/4>;

  2、Reduce阶段

  Reduce操作收集网页id相同的值,累加并按权重计算,pj=a*(p1+p2+...Pm)+(1-a)*1/n,其中m是指向网页j的网页j数,n所有网页数。

  思路就是这么简单,但是实践的时候,怎样在Map阶段知道当前行网页的概率值,需要一个单独的文件专门保存上一轮的概率分布值,先进行一次排序,让出链行与概率值按网页id出现在同一Mapper里面,整个流程如下:

  这样进行一次迭代相当于需要两次MapReduce,但第一次的MapReduce只是简单的排序,不需要任何操作,用python调用Hadoop的Streaming.

  SortMappert.py代码如下:

1 #!/bin/python
2 ‘‘‘Mapper for sort‘‘‘
3 import sys
4 for line in sys.stdin:
5 print line.strip()

  SortReducer.py也是一样

1 #!/bin/python
2 ‘‘‘Reducer for sort‘‘‘
3 import sys
4 for line in sys.stdin:
5 print line.strip()

  PageRankMapper.py代码:


 1 ‘‘‘ mapper of pangerank algorithm‘‘‘
2 import sys
3 id1 = id2 = None
4 heros = value = None
5 count1 = count2 = 0
6
7 for line in sys.stdin:
8 data = line.strip().split(‘\t‘)
9 if len(data) == 3 and data[1] == ‘a‘:# This is the pangerank value
10 count1 += 1
11 if count1 >= 2:
12 print ‘%s\t%s‘ % (id1,0.0)
13
14 id1 = data[0]
15 value = float(data[2])
16 else:#This the link relation
17 id2 = data[0]
18 heros = data[1:]
19 if id1 == id2 and id1:
20 v = value / len(heros)
21 for hero in heros:
22 print ‘%s\t%s‘ % (hero,v)
23 print ‘%s\t%s‘ % (id1,0.0)
24 id1 = id2 = None
25 count1 = 0

  PageRankReducer.py代码:


 1 ‘‘‘ reducer of pagerank algorithm‘‘‘
2 import sys
3 last = None
4 values = 0.0
5 alpha = 0.8
6 N = 4# Size of the web pages
7 for line in sys.stdin:
8 data = line.strip().split(‘\t‘)
9 hero,value = data[0],float(data[1])
10 if data[0] != last:
11 if last:
12 values = alpha * values + (1 - alpha) / N
13 print ‘%s\ta\t%s‘ % (last,values)
14 last = data[0]
15 values = value
16 else:
17 values += value #accumulate the page rank value
18 if last:
19 values = alpha * values + (1 - alpha) / N
20 print ‘%s\ta\t%s‘ % (last,values)

  在linux下模仿Map-Reduce的过程:


 1 #!/bin/bash
2 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
3 export PATH
4 max=10
5 for i in `seq 1 $max`
6 do
7 echo "$i"
8 cat links.txt pangerank.value > tmp.txt
9 cat tmp.txt |sort|python PageRankMapper.py |sort|python PageRankReducer.py >pangerank.value
10 done

  这个代码不用改动就可以直接在hadoop上跑起来。调用hadoop命令:


 1 #!/bin/bash
2
3 #sort
4 mapper=SortMapper.py
5 reducer=SortReducer.py
6 input="yours HDFS dir"/links.txt
7 input="yours HDFS dir"/pagerank.value
8 output="yours HDFS dir"/tmp.txt
9
10 hadoop jar contrib/streaming/hadoop-*streaming*.jar
11 -mapper /home/hduser/mapper.py
12 -reducer /home/hduser/reducer.py
13 -input $input
14 -output $output
15
16
17 #Caculator PageRank
18 mapper=PageRankMapper.py
19 reducer=PageRankReducer.py
20 input="yours HDFS dir"/tmp.txt
21 output="yours HDFS dir"/pagerank.value
22
23 hadoop jar contrib/streaming/hadoop-*streaming*.jar
24 -mapper /home/hduser/mapper.py
25 -reducer /home/hduser/reducer.py
26 -input $input
27 -output $output

  关于使用python操作hadoop可以查看参考文献。python代码写得浓浓的C味,望海涵!

  第四步中带环的陷阱图,迭代40次,权值a取0.8,计算结果如下:


 1 A            B                C                D
2 0.15 0.216666666667 0.416666666667 0.216666666667
3 0.136666666666 0.176666666666 0.51 0.176666666666
4 0.120666666666 0.157111111111 0.565111111111 0.157111111111
5 0.112844444444 0.145022222222 0.597111111111 0.145022222222
6 0.108008888889 0.138100740741 0.615789629629 0.138100740741
7 0.105240296296 0.134042666667 0.62667437037 0.134042666667
8 0.103617066667 0.131681145679 0.633020641975 0.131681145679
9 0.102672458272 0.130303676049 0.636720189629 0.130303676049
10 0.10212147042 0.129500792625 0.638876944329 0.129500792625
11 0.10180031705 0.129032709162 0.640134264625 0.129032709162
12 0.101613083665 0.128759834878 0.640867246578 0.128759834878
13 0.101503933951 0.128600756262 0.641294553524 0.128600756262
14 0.101440302505 0.128508018225 0.641543661044 0.128508018225
15 0.10140320729 0.128453954625 0.64168888346 0.128453954625
16 0.10138158185 0.128422437127 0.641773543895 0.128422437127
17 0.101368974851 0.128404063344 0.64182289846 0.128404063344
18 0.101361625338 0.128393351965 0.641851670733 0.128393351965
19 0.101357340786 0.128387107543 0.641868444129 0.128387107543
20 0.101354843017 0.128383467227 0.64187822253 0.128383467227
21 0.101353386891 0.128381345029 0.641883923053 0.128381345029
22 0.101352538012 0.128380107849 0.641887246292 0.128380107849
23 0.10135204314 0.128379386609 0.641889183643 0.128379386609
24 0.101351754644 0.128378966148 0.641890313062 0.128378966148
25 0.101351586459 0.128378721031 0.641890971481 0.128378721031
26 0.101351488412 0.128378578135 0.64189135532 0.128378578135
27 0.101351431254 0.128378494831 0.641891579087 0.128378494831
28 0.101351397932 0.128378446267 0.641891709536 0.128378446267
29 0.101351378507 0.128378417955 0.641891785584 0.128378417955
30 0.101351367182 0.128378401451 0.641891829918 0.128378401451
31 0.10135136058 0.128378391829 0.641891855763 0.128378391829
32 0.101351356732 0.12837838622 0.64189187083 0.12837838622
33 0.101351354488 0.12837838295 0.641891879614 0.12837838295
34 0.10135135318 0.128378381043 0.641891884735 0.128378381043
35 0.101351352417 0.128378379932 0.64189188772 0.128378379932
36 0.101351351973 0.128378379284 0.64189188946 0.128378379284
37 0.101351351714 0.128378378906 0.641891890474 0.128378378906
38 0.101351351562 0.128378378686 0.641891891065 0.128378378686
39 0.101351351474 0.128378378558 0.64189189141 0.128378378558
40 0.101351351423 0.128378378483 0.641891891611 0.128378378483
41 0.101351351393 0.128378378439 0.641891891728 0.128378378439

  可以看到pagerank值已经基本趋于稳定,并与第四步的分数表示一致。

  PageRank的简介就介绍到这里了,如果想深入可以参考原论文或者下面的参考文献

参考文献

  1.《Mining of Massive Datasets》

  2.《An introduction to information retrival》

  3.使用python操作Hadoop

  4.js可视化展示PageRank计算过程(可能需要梯子),可访问作者博客.

  感谢阅读,转载请注明出处:http://www.cnblogs.com/fengfenggirl/

时间: 2024-11-18 00:41:21

PageRank算法简介及Map-Reduce实现的相关文章

PageRank 算法简介

有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank-introduction.html 另一篇<PageRank简介-串讲Q&A.docx> http://docs.babel.baidu.com/doc/ee14bd65-ba71-4ebb-945b-cf279717233b PageRank对网页排名的算法,曾是Google发家致富的

MapReduce 之PageRank 算法概述、设计思路和源码分析

早就对PageRank 算法感兴趣,但一直都是轮廓性的概念,没有具体深入学习.最近要学习和总结MapReduce 的实例,就又把PageRank 算法重新学习了一遍,并基于MapReduce 进行了实现. 1. PageRank是什么 PageRank,网页排名,右脚网页级别.是以Google 公司创始人Larry Page 之姓来命名.PageRank 计算每一个网页的PageRank值,并根据PageRank值的大小对网页的重要性进行排序.PageRank的基本思想是:对于一个网页A来说,链

Hadoop简介(1):什么是Map/Reduce

看这篇文章请出去跑两圈,然后泡一壶茶,边喝茶,边看,看完你就对hadoop整体有所了解了. Hadoop简介 Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper,Pig,Chukwa,Hive,Hbase,Mahout,flume等. 这里详细分解这里面的概念让大家通过这篇文章了解到底是什么hadoop: 1.什么是Map/Reduce,看

【转】Map/Reduce简介

转自:http://blog.csdn.net/opennaive/article/details/7514146 1. MapReduce是干啥的 因为没找到谷歌的示意图,所以我想借用一张Hadoop项目的结构图来说明下MapReduce所处的位置,如下图. Hadoop实际上就是谷歌三宝的开源实现,Hadoop MapReduce对应Google MapReduce,HBase对应BigTable,HDFS对应GFS.HDFS(或GFS)为上层提供高效的非结构化存储服务,HBase(或Big

【转】深入浅出PageRank算法

原文链接 http://segmentfault.com/a/1190000000711128 PageRank算法 PageRank算法是谷歌曾经独步天下的“倚天剑”,该算法由Larry Page和Sergey Brin在斯坦福大学读研时发明的, 论文点击下载: The PageRank Citation Ranking: Bringing Order to the Web. 本文首先通过一些参考文献引出问题,然后给出了PageRank的几种实现算法, 最后将其推广至在MapReduce框架下

pagerank算法的MapReduce实现

pagerank是一种不容易被欺骗的计算Web网页重要性的工具,pagerank是一个函数,它对Web中(或者至少是抓取并发现其中连接关系的一部分web网页)的每个网页赋予一个实数值.他的意图在于,网页 的pagerank越高,那么它就越重要.并不存在一个固定的pagerank分配算法. 对于pagerank算法的推到我在这里不想做过多的解释,有兴趣的可以自己查看资料看看,这里我直接给出某个网页pagerank的求解公式: P(n)=a/G+(1-a)*求和(P(m)/C(m))     (m属

map reduce

作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的说就是问题可以划分成若干单元,每个单元的计算互不相关,单元计算结果可以在可以承受的时间内合成为总结果的计算.再说直白一点:所有分治模型都可交由hadoop解决.可以说spark是功能更全面的hadoop,支持一些诸如filter.group之类的操作,但是原本思想仍是map reduce,差别不太大

Hadoop应用开发实战(flume应用开发、搜索引擎算法、Pipes、集群、PageRank算法)

Hadoop是2013年最热门的技术之一,通过北风网robby老师<深入浅出Hadoop实战开发>.<Hadoop应用开发实战>两套课程的学习,普通Java开发人员可以在最快的时间内提升工资超过15000.成为一位完全精通Hadoop应用开发的高端人才. Hadoop是什么,为什么要学习Hadoop? Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式

【大创_社区划分】——PageRank算法MapReduce实现

PageRank算法的分析和Python实现参考:http://blog.csdn.net/gamer_gyt/article/details/47443877 举例来讲: 假设每个网页都有一个自己的默认PR值,相当于人为添加给它是一种属性,用来标识网页的等级或者重要性,从而依据此标识达到排名目的.假设有ID号是1的一个网页,PR值是10,假如它产生了到ID=3,ID=6,ID=8 ,ID=9这4个网页的链接.那么可以理解为ID=1的网页向ID=3,6,8,9的4个网页各贡献了2.5的PR值.如