http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1627
http://acm.fzu.edu.cn/problem.php?pid=2238
对应的51NOD这个题,先把n--和没m--
再套公式
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <assert.h> #define IOS ios::sync_with_stdio(false) using namespace std; #define inf (0x3f3f3f3f) typedef long long int LL; #include <iostream> #include <sstream> #include <vector> #include <set> #include <map> #include <queue> #include <string> LL quick_pow(LL a, LL b, LL MOD) { //求解 a^b%MOD的值 LL base = a % MOD; LL ans = 1; //相乘,所以这里是1 while (b) { if (b & 1) { ans = (ans * base) % MOD; //如果这里是很大的数据,就要用quick_mul } base = (base * base) % MOD; //notice。注意这里,每次的base是自己base倍 b >>= 1; } return ans; } LL C(LL n, LL m, LL MOD) { if (n < m) return 0; //防止sb地在循环,在lucas的时候 if (n == m) return 1; LL ans1 = 1; LL ans2 = 1; LL mx = max(n - m, m); //这个也是必要的。能约就约最大的那个 LL mi = n - mx; for (int i = 1; i <= mi; ++i) { ans1 = ans1 * (mx + i) %MOD; ans2 = ans2 * i % MOD; } return (ans1 * quick_pow(ans2, MOD - 2, MOD) % MOD); //这里放到最后进行,不然会很慢 } const int MOD = 1e9 + 7; void work() { int n, m; cin >> n >> m; cout << C(n + m - 4, n - 2, MOD) << endl; } int main() { #ifdef local freopen("data.txt", "r", stdin); // freopen("data.txt", "w", stdout); #endif work(); return 0; }
51NOD
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define inf (0x3f3f3f3f) typedef long long int LL; #include <iostream> #include <sstream> #include <vector> #include <set> #include <map> #include <queue> #include <string> LL a, d, m, i; const int MOD = 1000000007; LL quick_pow (LL a, LL b, LL MOD) { //求解 a^b%MOD的值 LL base = a % MOD; LL ans = 1; //相乘,所以这里是1 while (b) { if (b & 1) { ans = (ans * base) % MOD; //如果这里是很大的数据,就要用quick_mul } base = (base * base) % MOD; //notice //注意这里,每次的base是自己base倍 b >>= 1; } return ans; } LL C (LL n, LL m, LL MOD) { if (n < m) return 0; //防止sb地在循环,在lucas的时候 if (n == m) return 1; LL ans1 = 1; LL ans2 = 1; LL mx = max(n - m, m); //这个也是必要的。能约就约最大的那个 LL mi = n - mx; for (int i = 1; i <= mi; ++i) { ans1 = ans1 * (mx + i) % MOD; ans2 = ans2 * i % MOD; } return (ans1 * quick_pow(ans2, MOD - 2, MOD) % MOD); //这里放到最后进行,不然会很慢 } LL Lucas (LL n, LL m, LL MOD) { LL ans = 1; while (n && m && ans) { ans = ans * C(n % MOD, m % MOD, MOD) % MOD; n /= MOD; m /= MOD; } return ans; } void work () { if (i == 1) { printf ("%lld\n", a); return; } LL ans = (C(m + i - 1, m, MOD) * a % MOD + C(m + i - 1, i - 2, MOD) * d % MOD) % MOD; printf ("%lld\n", ans); return ; } int main() { #ifdef local freopen("data.txt", "r", stdin); #endif while (scanf("%lld%lld%lld%lld", &a, &d, &m, &i) != EOF) work(); return 0; }
FZUOJ
Problem 2238 Daxia & Wzc's problem 1627 瞬间移动
时间: 2024-10-13 02:13:23