boosting、adaboost

1、boosting

Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数。他是一种框架算法,主要是通过对样本集的操作获得样本子集,然后用弱分类算法在样本子集上训练生成一系列的基分类器。

在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合为一个分类器的方法,即boostrapping方法和bagging方法。

1.1 bootstrapping方法的主要过程

i)重复地从一个样本集合D中采样n个样本

ii)针对每次采样的子样本集,进行统计学习,获得假设Hi

iii)将若干个假设进行组合,形成最终的假设Hfinal

iv)将最终的假设用于具体的分类任务

1.2 bagging方法的主要过程

i)训练分类器 从整体样本集合中,抽样n* < N个样本 针对抽样的集合训练分类器Ci

ii)分类器进行投票,最终的结果是分类器投票的优胜结果

但是,上述这两种方法,都只是将分类器进行简单的组合,实际上,并没有发挥出分类器组合的威力来。直到1989年,Yoav Freund与 Robert Schapire提出了一种可行的将弱分类器组合为强分类器的方法。

Schapire还提出了一种早期的boosting算法,其主要过程如下:

i)从样本整体集合D中,不放回的随机抽样n1 < n个样本,得到集合 D1 训练弱分类器C1

ii)从样本整体集合D中,抽取 n2 < n个样本,其中合并进一半被C1 分类错误的样本。得到样本集合 D2 训练弱分类器C2

iii)抽取D样本集合中,C1C2 分类不一致样本,组成D3 训练弱分类器C3

iv)用三个分类器做投票,得到最后分类结果

到了1995年,Freund and schapire提出了现在的adaboost算法。

2、adaboost

主要框架可以描述为:

i)循环迭代多次,更新样本分布,寻找当前分布下的最优弱分类器,计算弱分类器误差率

ii)聚合多次训练的弱分类器

现在,boost算法有了很大的发展,出现了很多的其他boost算法,例如:logitboost算法,gentleboost算法等。

3、adaboost的收敛性证明

整个证明的核心是:

,其中表示样本总数,表示弱分类器的总数,为每一级弱分类器的错误率。

证明过程:

如果,故。所以得到上式子。

至此,看到AdaBoost的错误率上限,接下来的目标就是使这个上限尽可能小!

在原始AdaBoost算法中h值域是{-1,1},问题是怎么找到最佳的

对于原始的AdaBoost,前文讨论过其h是“定死”的,失去了“讨价还价”的余地,而在Real AdaBoost不在“定死”。

推导过程ppt下载

参考:http://blog.163.com/f_rock/blog/static/1947961312011102810164354/

4、gentle adaboost

参考:http://blog.csdn.net/wsj998689aa/article/details/42652827

时间: 2024-10-13 04:52:37

boosting、adaboost的相关文章

浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前的人脸检测方法主要有两大类:基于知识和基于统计. Ø  基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛.眉毛.嘴巴.鼻子等器官的特征以及相互之间的几何位置关系来检测人脸. Ø  基于统计的方法:将人脸看作一个整体的模式——二维像素矩

Bagging(Bootstrap aggregating)、随机森林(random forests)、AdaBoost

引言 在这篇文章中,我会详细地介绍Bagging.随机森林和AdaBoost算法的实现,并比较它们之间的优缺点,并用scikit-learn分别实现了这3种算法来拟合Wine数据集.全篇文章伴随着实例,由浅入深,看过这篇文章以后,相信大家一定对ensemble的这些方法有了很清晰地了解. Bagging bagging能提升机器学习算法的稳定性和准确性,它可以减少模型的方差从而避免overfitting.它通常应用在决策树方法中,其实它可以应用到任何其它机器学习算法中.如果大家对决策树的算法不太

监督算法大比拼之BP、SVM、adaboost非线性多分类实验

写在之前: 前些文章曾经细数过从决策树.贝叶斯算法等一些简单的算法到神经网络(BP).支持向量机(SVM).adaboost等一些较为复杂的机器学习算法(对其中感兴趣的朋友可以往前的博客看看),各种算法各有优缺点,基本上都能处理线性与非线性样本集,然通观这些算法来看,个人感觉对于数据(无论线性还是非线性)的分类上来说,里面比较好的当数BP.SVM.adaboost元算法这三种了,由于前面在介绍相应算法原理以及实验的时候所用的样本以及分类情况都是二分类的,对于多分类的情况未曾涉及过,而实际情况往往

Haar特征、积分图、Adaboost算法、分类器训练

一.Haar-like特征 Haar特征值反映了图像分度变化的情况. Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征. Haar特征分为三类:边缘特征.线性特征.中心特征和对角线特征,组合成特征模板.特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和.Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜

Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc

python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share http://www.360doc.com/content/18/1015/10/60075508_794857307.shtml http://w

机器学习算法( 七、AdaBoost元算法)

一.概述 当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题时又何尝不是如此?这就是元算法(meta-algorithm)背后的思路.元算法是对其他算法进行组合的一种方式.接下来我们将集中关注一个称作AdaBoost的最流行的元算法.由于某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 本章首先讨论不同分类器的集成方法,然后主要关注boosting方法及其代表分类器Adaboost.再接下来,我们就会建立一个单层决

机器学习经典算法详解及Python实现--元算法、AdaBoost

第一节,元算法略述 遇到罕见病例时,医院会组织专家团进行临床会诊共同分析病例以判定结果.如同专家团临床会诊一样,重大决定汇总多个人的意见往往胜过一个人的决定.机器学习中也吸取了'三个臭皮匠顶个诸葛亮'(实质上是由三个裨将顶个诸葛亮口误演化而来)的思想,这就是元算法的思想.元算法(meta-algorithm)也叫集成方法(ensemble method),通过将其他算法进行组合而形成更优的算法,组合方式包括:不同算法的集成,数据集不同部分采用不同算法分类后的集成或者同一算法在不同设置下的集成.

Decision Tree、Random Forest、AdaBoost、GBDT

原文地址:https://www.jianshu.com/p/d8ceeee66a6f Decision Tree 基本思想在于每次分裂节点时选取一个特征使得划分后得到的数据集尽可能纯. 划分标准 信息增益(Information Gain) 信息增益 = 未划分数据集的信息熵 - 划分后子数据集的信息熵的数学期望值. 事件\(x_i\)的信息量\(=-logP(x_i)\),信息熵就是信息量的期望值,记作\(H(x)\),即\(H(x)=-\sum_{i=1}^{n}P(x_i)logP(x_

aggregation(2):adaptive Boosting (AdaBoost)

给你这些水果图片,告诉你哪些是苹果.那么现在,让你总结一下哪些是苹果? 1)苹果都是圆的.我们发现,有些苹果不是圆的.有些水果是圆的但不是苹果, 2)其中到这些违反"苹果都是圆的"这一规则的图片,我们得到"苹果都是圆的,可能是红色或者绿色"..我们发现还是有些图片违反这一规则: 3)其中到违反规则的图片,我们发现"苹果都是圆的,可能是红色或者绿色,而且有梗". 至此分类完成. 模拟这一过程,就是adaBoost算法. 首先从一个弱分类器开始,然后