UVA122 Trees on the level【二叉树】【BFS】

Trees on the level

Background

Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines‘ CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in computer graphics.

This problem involves building and traversing binary trees.

The Problem

Given a sequence of binary trees, you are to write a program that prints a level-order traversal of each tree. In this problem each node of a binary tree contains a positive integer and all binary trees have have fewer than 256 nodes.

In a level-order traversal of a tree, the data in all nodes at a given level are printed in left-to-right order and all nodes at level k are printed before all nodes at level k+1.

For example, a level order traversal of the tree

picture28

is: 5, 4, 8, 11, 13, 4, 7, 2, 1.

In this problem a binary tree is specified by a sequence of pairs (n,s) where n is the value at the node whose path from the root is given by the string s. A path is given be a sequence of L‘s and R‘s where L indicates a left branch and R indicates a right
branch. In the tree diagrammed above, the node containing 13 is specified by (13,RL), and the node containing 2 is specified by (2,LLR). The root node is specified by (5,) where the empty string indicates the path from the root to itself. A binary tree is
considered to be completely specified if every node on all root-to-node paths in the tree is given a value exactly once.

The Input

The input is a sequence of binary trees specified as described above. Each tree in a sequence consists of several pairs (n,s) as described above separated by whitespace. The last entry in each tree is (). No whitespace appears between left and right parentheses.

All nodes contain a positive integer. Every tree in the input will consist of at least one node and no more than 256 nodes. Input is terminated by end-of-file.

The Output

For each completely specified binary tree in the input file, the level order traversal of that tree should be printed. If a tree is not completely specified, i.e., some node in the tree is NOT given a value or
a node is given a value more than once, then the string ``not complete‘‘ should be printed.

Sample Input

(11,LL) (7,LLL) (8,R)

(5,) (4,L) (13,RL) (2,LLR) (1,RRR) (4,RR) ()

(3,L) (4,R) ()

Sample Output

5 4 8 11 13 4 7 2 1

not complete

题目大意:输入一颗二叉树,将它按从上到下、从左到右的顺序输出各个节点位置。

思路:先根据输入的字符串将二叉树建立起来(注:可能出现不能建立的情况),若能

成功建立,则用宽度优先搜索(BFS)的方法遍历所有节点,并在遍历的时候,把结果

存下来,然后进行输出。

注意:BFS需要用到队列。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<vector>
using namespace std;

int flag = 1;
struct Node
{
    bool IsValue;
    int v;
    Node *left,*right;
    Node():IsValue(false),left(NULL),right(NULL){}
};

Node *root;
Node* newnode()
{
    return new Node();
}
void addnode(int v,char *s)
{
    int len = strlen(s);
    Node *u = root;
    for(int i = 0; i < len; i++)
    {
        if(s[i] == 'L')
        {
            if(u->left == NULL)
                u->left = newnode();
            u = u->left;
        }
        else if(s[i] == 'R')
        {
            if(u->right == NULL)
                u->right = newnode();
            u = u->right;
        }
    }
    if(u->IsValue)
        flag = 0;
    u->v = v;
    u->IsValue = true;
}
char s[300];
bool read_input()
{
    flag = 1;
    root = newnode();
    while(1)
    {
        if(scanf("%s",s)!=1)
            return false;
        if(!strcmp(s,"()"))
            break;
        int v;
        sscanf(&s[1],"%d",&v);
        addnode(v, strchr(s,',')+1);
    }
    return true;
}

bool bfs(vector<int>& ans)
{
    queue<Node*> q;
    ans.clear();
    q.push(root);
    while(!q.empty())
    {
        Node* u = q.front();
        q.pop();
        if(!u->IsValue)
            return false;
        ans.push_back(u->v);
        if(u->left != NULL)
            q.push(u->left);
        if(u->right != NULL)
            q.push(u->right);
    }
    return true;
}

int main()
{
    vector<int> ans;
    while(read_input())
    {
        if(!bfs(ans))
            flag = 0;
        if(flag==0)
            printf("not complete\n");
        else
        {
            for(int i = 0; i < ans.size(); i++)
            {
                if(i==ans.size()-1)
                    printf("%d\n",ans[i]);
                else
                    printf("%d ",ans[i]);
            }
        }
    }

    return 0;
}
时间: 2024-10-19 05:54:48

UVA122 Trees on the level【二叉树】【BFS】的相关文章

UVa122:Trees on the level

Trees on the level Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in

UVA 122 Trees on the level 二叉树 广搜

题目链接: https://vjudge.net/problem/UVA-122 题目描述: 给你一种二叉树的构造方法, 让你逐层输出二叉树的节点值, 如果不能够则输出"not complete" 解题思路: 这道题就是硬搞就可以了, 参考紫书去做的, 首先处理输入就是非常麻烦的事情, 用到了sscanf就会轻松很多, 看来C中还是有很多很多的好用的标准库函数可以拿来用的, 例如还有本题中的strchr() , 处理完输入, 然后就去构造数. 然后广搜一遍即可 代码: #include

UVA 122 -- Trees on the level (二叉树 BFS)

 Trees on the level UVA - 122  解题思路: 首先要解决读数据问题,根据题意,当输入为"()"时,结束该组数据读入,当没有字符串时,整个输入结束.因此可以专门编写一个readin()函数,类型设置为bool型,遇到第一种情况时返回true,遇到第二种情况返回false,主程序中只要发现readin返回false时就break,结束整个大循环. 接下来要建立二叉树,首先为二叉树编写一个结构体,然后根据字符串的输入情况来建树,如果是'L'就往左走,走不动时建一颗

122 - Trees on the level(动态分配空间解法)

Trees on the level Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms in

UVa 122 Trees on the level(建树,层次遍历)

题意  建树并层次遍历输出  (data,pos)  pos表示改节点位置  L代表左儿子  R代表右儿子 建树很简单  开始在根节点  遇到L往左走遇到R往右走 节点不存在就新建   走完了就保存改节点的值  输出直接bfs就行了了 #include<cstdio> #include<cctype> #include<cstring> using namespace std; const int maxn = 300; char s[maxn][maxn]; int

E - Trees on the level

 Trees on the level  Background Trees are fundamental in many branches of computer science. Current state-of-the art parallel computers such as Thinking Machines' CM-5 are based on fat trees. Quad- and octal-trees are fundamental to many algorithms i

例题6-7 Trees on the level ,Uva122

本题考查点有以下几个: 对数据输入的熟练掌握 二叉树的建立 二叉树的宽度优先遍历 首先,特别提一下第一点,整个题目有相当一部分耗时在了第一个考查点上(虽然有些不必要,因为本应该有更简单的方法).这道题的输入有以下几种方案: 一次性输入并直接得到要得到的数据 输入后进行加工处理 对于第一种方案,我采用的是与正则相结合的方案 scanf("(%d%[,A-Z]) ",&d,s)) 得到这样的写法可谓是费了一番功夫.难点有几个,最突出的是考虑数据不存在的情况:如()(1,) 我的解决

UVa 122 Trees on the level (动态建树 &amp;&amp; 层序遍历二叉树)

题意  :输入一棵二叉树,你的任务是按从上到下.从左到右的顺序输出各个结点的值.每个结 点都按照从根结点到它的移动序列给出(L表示左,R表示右).在输入中,每个结点的左 括号和右括号之间没有空格,相邻结点之间用一个空格隔开.每棵树的输入用一对空括 号"()"结束(这对括号本身不代表一个结点),注意,如果从根到某个叶结点的路径上有的结点没有在输入中给出,或者给出超过一 次,应当输出not complete.结点个数不超过256. 分析  : 如果使用数组建树的话,256个结点看着不多,但

(二叉树 BFS) 102. Binary Tree Level Order Traversal

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level). For example:Given binary tree [3,9,20,null,null,15,7], 3 / 9 20 / 15 7 return its level order traversal as: [ [3], [9,20], [15,7] ]