[NOIP2015]运输计划 D2 T3 LCA+二分答案+差分数组

[NOIP2015]运输计划 D2 T3

Description

公元2044年,人类进入了宇宙纪元。

L国有n个星球,还有n-1条双向航道,每条航道建立在两个星球之间,这n-1条航道连通了L国的所有星球。

小P掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从ui号星球沿最快的宇航路径飞行到vi号星球去。显然,飞船驶过一条航道是需要时间的,对于航道j,任意飞船驶过它所花费的时间为tj,并且任意两艘飞船之间不会产生任何干扰。

为了鼓励科技创新,L国国王同意小P的物流公司参与L国的航道建设,即允许小P把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。

在虫洞的建设完成前小P的物流公司就预接了m个运输计划。在虫洞建设完成后,这m个运输计划会同时开始,所有飞船一起出发。当这m个运输计划都完成时,小P的物流公司的阶段性工作就完成了。

如果小P可以自由选择将哪一条航道改造成虫洞,试求出小P的物流公司完成阶段性工作所需要的最短时间是多少?

Input

第一行包括两个正整数n、m,表示L国中星球的数量及小P公司预接的运输计划的数量,星球从1到n编号。 
接下来n-1行描述航道的建设情况,其中第i行包含三个整数ai, bi和ti,表示第i条双向航道修建在ai与bi两个星球之间,任意飞船驶过它所花费的时间为ti。 
接下来m行描述运输计划的情况,其中第j行包含两个正整数uj和vj,表示第j个运输计划是从uj号星球飞往vj号星球。

Output

共1行,包含1个整数,表示小P的物流公司完成阶段性工作所需要的最短时间。

Sample Input

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

Sample Output

11

HINT

【样例说明】 
将第1条航道改造成虫洞:则三个计划耗时分别为:11、12、11,故需要花费的时间为12。 
将第2条航道改造成虫洞:则三个计划耗时分别为:7、15、11,故需要花费的时间为15。 
将第3条航道改造成虫洞:则三个计划耗时分别为:4、8、11,故需要花费的时间为11。 
将第4条航道改造成虫洞:则三个计划耗时分别为:11、15、5,故需要花费的时间为15。 
将第5条航道改造成虫洞:则三个计划耗时分别为:11、10、6,故需要花费的时间为11。 
故将第3条或第5条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为11。

【数据规模与约定】 
所有测试数据的范围和特点如下表所示 

题解:先预处理出所有路径的LCA和所用时间,然后二分答案。找出所有用时比mid大的路径,那么如果我们将边 i 变成虫洞,就要保证所有用时超过mid的路径都经过 i ,并且在 i 变成虫洞后,这些路径的长度都小于mid。所以用差分数组处理一下每条边有多少条这样的路径经过就行了。

为了降低常数,本人代码里还做了几处小优化,可能会发挥用处

#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
const int maxn=300010;
int n,m,cnt,maxx,minn;
int head[maxn],to[maxn<<1],next[maxn<<1],val[maxn<<1];
int deep[maxn],son[maxn],top[maxn],fa[maxn],size[maxn],dis[maxn],v[maxn];
int s[maxn],q[maxn],p1[maxn],p2[maxn],pa[maxn],len[maxn];
int readin()    //读入优化
{
    int ret=0;    char gc;
    while(gc<‘0‘||gc>‘9‘)    gc=getchar();
    while(gc>=‘0‘&&gc<=‘9‘)    ret=ret*10+gc-‘0‘,gc=getchar();
    return ret;
}
void add(int a,int b,int c)
{
    to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
void dfs1(int x)
{
    size[x]=1,q[++q[0]]=x;
    for(int i=head[x];i!=-1;i=next[i])
    {
        if(to[i]!=fa[x])
        {
            v[to[i]]=val[i],deep[to[i]]=deep[x]+1,dis[to[i]]=dis[x]+val[i],fa[to[i]]=x;
            dfs1(to[i]);
            size[x]+=size[to[i]];
            if(size[to[i]]>size[son[x]])    son[x]=to[i];
        }
    }
}
int getlca(int x,int y)    //树剖
{
    while(top[x]!=top[y])
    {
        if(deep[top[x]]<deep[top[y]])    swap(x,y);
        x=fa[top[x]];
    }
    if(deep[x]>deep[y])    swap(x,y);
    return x;
}
int check(int sta)
{
    int i,sum=0;
    memset(s,0,sizeof(s));
    for(i=1;i<=m;i++)
        if(len[i]>sta)
            s[p1[i]]++,s[p2[i]]++,s[pa[i]]-=2,sum++;
    for(i=n;i>=1;i--)
    {
        s[fa[q[i]]]+=s[q[i]];
        if(v[q[i]]>=maxx-sta&&s[q[i]]==sum)    return 1;
    }
    return 0;
}
int main()
{
    n=readin(),m=readin();
    memset(head,-1,sizeof(head));
    int i,j,a,b,c;
    for(i=1;i<n;i++)
    {
        a=readin(),b=readin(),c=readin();
        add(a,b,c),add(b,a,c),minn=max(minn,c);
    }
    deep[1]=top[1]=1;
    dfs1(1);
    for(i=1;i<=n;i++)    //用DFS序
    {
        if(q[i]==son[fa[q[i]]])    top[q[i]]=top[fa[q[i]]];
        else top[q[i]]=q[i];
    }
    for(i=1;i<=m;i++)    //预处理
    {
        p1[i]=readin(),p2[i]=readin();
        pa[i]=getlca(p1[i],p2[i]);
        len[i]=dis[p1[i]]+dis[p2[i]]-2*dis[pa[i]];
        maxx=max(maxx,len[i]);
    }
    int l=maxx-minn,r=maxx+1,mid;    //缩小范围
    while(l<r)
    {
        mid=l+r>>1;
        if(check(mid))    r=mid;
        else l=mid+1;
    }
    printf("%d",r);
    return 0;
}
时间: 2024-12-28 01:17:03

[NOIP2015]运输计划 D2 T3 LCA+二分答案+差分数组的相关文章

10.05T2 二项式展开+二分答案+差分数组

Description 御坂美琴正在进行能力测试御坂美琴正在进行能力测试,她手上有 k 枚硬币,她面前 50 米有 n 个相邻放置的自动售货机,编号为 1 到 n,且每个售货机都有一个耐久度 vi ,为了使测试更有难度,考官钦定了一个值 m .御坂美琴可以精准击中任意一个售货机,且排在被命中的售货机前的售货机也会受到溅射伤害.具体来说,若御坂美琴使用 p 的攻击力取投掷硬币,被击中的售货机 i 会受到 p 的伤害,且排在此售货机前的第 j 个售货机会受到max(0,p−(i−j)m), 的伤害.

BZOJ 4326:NOIP2015 运输计划(二分+差分+lca)

NOIP2015 运输计划Description公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去.显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰.为了鼓励科技创新, L

NOIP2015 运输计划(二分+LCA+差分)

4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 308  Solved: 208[Submit][Status][Discuss] Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui

树链剖分-Hello!链剖-[NOIP2015]运输计划-[填坑]

This article is made by Jason-Cow.Welcome to reprint.But please post the writer's address. http://www.cnblogs.com/JasonCow/ [NOIP2015]运输计划    Hello!链剖.你好吗? 题意: 给出一棵n个节点的带权树,m对树上点对 现在允许删除一条边,(权值修改为0) 输出: 最小化的点对间最大距离 1.链剖 2.树上差分 3.二分 链剖我就不多说了,就是两dfs 注意

AC日记——[NOIP2015]运输计划 cogs 2109

[NOIP2015] 运输计划 思路: 树剖+二分: 代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 300005 #define INF 0x7fffffff int n,deep[maxn],dis[maxn],dis_[maxn],f[maxn],top[maxn]; i

数据结构(树链剖分):COGS 2109. [NOIP2015] 运输计划

2109. [NOIP2015] 运输计划 ★★★   输入文件:transport.in   输出文件:transport.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 公元 2044 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物 流飞船需要从 ui 号星球沿最快的宇航路径飞行到 v

[LuoguP4094] [HEOI2016] [TJOI2016]字符串(二分答案+后缀数组+ST表+主席树)

[LuoguP4094] [HEOI2016] [TJOI2016]字符串(二分答案+后缀数组+ST表+主席树) 题面 给出一个长度为\(n\)的字符串\(s\),以及\(m\)组询问.每个询问是一个四元组\((a,b,c,d)\),问\(s[a,b]\)的所有子串和字符串\(s[c,d]\)的最长公共前缀长度的最大值. \(n,m \leq 10^5\) 分析 显然答案有单调性.首先我们二分答案\(mid\),考虑如何判定. 如果mid这个答案可行,那么一定存在一个后缀x,它的开头在\([a,

NOIp2015 运输计划 [LCA] [树上差分] [二分答案]

我太懒了 吃掉了题面 题解 & 吐槽 一道很好的树上差分练习题. 不加fread勉强a过bzoj和luogu的数据,加了fread才能在uoj里卡过去. 可以发现,答案则是运输计划里花费的最大值,最大值最小,便是二分答案的标志. 那么该怎么check呢... 我们得找出所有超过限制的计划,这个过程可以在LCA倍增的过程中预处理出来. 然后再找出一些被这些计划都覆盖的边,找到最大的那条边,如果最大的计划花费减去最大的那条边小于x,那么x就是可行的. 但是该怎么找到那些被计划都覆盖的边呢... 我们

【BZOJ 4326】NOIP2015运输计划

http://www.lydsy.com/JudgeOnline/problem.php?id=4326 题目描述 公元2044年,人类进入了宇宙纪元. 国有个星球,还有条双向航道,每条航道建立在两个星球之间,这条航道连通了国的所有星球. 小掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从号星球沿最快的宇航路径飞行到号星球去.显然,飞船驶过一条航道是需要时间的,对于航道,任意飞船驶过它所花费的时间为,并且任意两艘飞船之间不会产生任何干扰. 为了鼓励科技创新,国国王