Storm的容错性

一、简介

  如果在消息处理过程中出了一些异常,Storm 会重新安排这个出问题的 topology。Storm 保证一个 topology 永远运行(除非你显式杀掉这个 topology) 。

  当然,如果 topology 中存储了中间状态,那么当 topology 重新被 Storm 启动的时候,需要应用自己处理中间状态的恢复

二、集群的各级容错

1. 任务级失败

  1. bolt 任务失败。此时,acker 中所有与此 bolt 任务关联的消息都会因为超时而失败,对应 spout 的 fail 方法将被调用。
  2. acker 任务失败。如果 acker 任务本身失败了,它在失败之前持有的所有消息都将会因为超时而失败。Spout 的 fail 方法将被调用。
  3. Spout 任务失败。这种情况下,Spout 任务对接的外部设备(如MQ)负责消息的完整性。例如当客户端异常的情况下,kestrel队列会将处于 pending 状态的所有的消息重新放回到队列中。其他的 spout 数据源,可能需要我们自行维护这个消息的完整性

2. 任务槽(slot)故障

  1. worker 失败。每个 worker 中包含数个 bolt(或 spout)任务 。supervisor 负责监控这些任务,当 worker 失败后,supervisor会尝试在本机重启它。
  2. supervisor 失败。supervisor 是无状态的,因此 supervisor 的失败不会影响当前正在运行的任务,只要及时的将它重新启动即可。supervisor 不是自举的,需要外部监控来及时重启。
  3. nimbus 失败。nimbus 是无状态的,因此 nimbus 的失败不会影响当前正在运行的任务(nimbus 失败时,无法提交新的任务) ,只要及时的将它重新启动即可。nimbus 不是自举的 , 需要外部监控来及时重启

3. 集群节点(机器)故障  

  1. storm 集群中的节点故障。此时 nimbus 会将此机器上所有正在运行的任务转移到其他可用的机器上运行。
  2. zookeeper 集群中的节点故障。 zookeeper 保证少于半数的机器宕机仍可正常运行,及时修复故障机器即可
时间: 2024-10-09 14:59:55

Storm的容错性的相关文章

storm学习笔记(一)

1.storm介绍 storm是一种用于事件流处理的分布式计算框架,它是有BackType公司开发的一个项目,于2014年9月加入了Apahche孵化器计划并成为其旗下的顶级项目之一.Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理.Storm保证每个消息都会得到处理,而且它很快--在一个小集群中,每秒可以处理数以百万计的消息.更棒的是你可以使用任意编程语言来做开发.storm源码:githup storm特点: 简单的编程

Storm 官方文档翻译 --- 消息的可靠性保障

消息的可靠性保障 Storm 能够保证每一个由 Spout 发送的消息都能够得到完整地处理.本文详细解释了 Storm 如何实现这种保障机制,以及作为用户如何使用好 Storm 的可靠性机制. 消息的“完整性处理”是什么意思 一个从 spout 中发送出的 tuple 会产生上千个基于它创建的 tuples.例如,有这样一个 word-count 拓扑: TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("sent

Storm消息可靠性的保障机制

参考[并发编程网]的Storm官方教程翻译 以WordCountToPology为例: // 构造Topology TopologyBuilder builder = new TopologyBuilder(); builder.setSpout(SPOUT_ID,new SentenceSpout(), 2)// 指定 Spout ,2 指的是使用2个executor来运行spout .setNumTasks(4);//指定tasks的数量 // 指定 SentenceSpout 向Split

Fault Tolerance —— Storm的故障容错性

 本文讲解了Storm故障容忍性(Fault-Tolerance)的设计细节:当Worker.节点.Nimbus或者Supervisor出现故障时是如何实现故障容忍性,以及Nimbus是否存在单点故障问题. 当一个Worker挂了会怎样? When a worker dies, the supervisor will restart it. If it continuously fails on startup and is unable to heartbeat to Nimbus, Nimb

[转]hadoop,spark,storm,pig,hive,mahout等到底有什么区别和联系?

摘自知乎大神的论述 作者:Xiaoyu Ma链接:https://www.zhihu.com/question/27974418/answer/38965760来源:知乎著作权归作者所有,转载请联系作者获得授权. 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮.但是每个工具有自己的特性,虽然奇怪

使用Storm实现实时大数据分析

摘要:随着数据体积的越来越大,实时处理成为了许多机构需要面对的首要挑战.Shruthi Kumar和Siddharth Patankar在Dr.Dobb’s上结合了汽车超速监视,为我们演示了使用Storm进行实时大数据分析.CSDN在此编译.整理. 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成TB级别的数据.数据来源囊括了互联网装置可以捕获的任何类型数据,网站.社交媒体.交易型商业数据以及其它商业环境中创建的数据.考虑到数据的生成量,实时处理成为了许多机

Storm与Spark:谁才是我们的实时处理利器

实时商务智能这一构想早已算不得什么新生事物(早在2006年维基百科中就出现了关于这一概念的页面).然而尽管人们多年来一直在对此类方案进行探讨,我却发现很多企业实际上尚未就此规划出明确发展思路.甚至没能真正意识到其中蕴含的巨大效益. 为什么会这样?一大原因在于目前市场上的实时商务智能与分析工具仍然非常有限.传统数据仓库环境针对的主要是批量处理流程,这类方案要么延迟极高.要么成本惊人——当然,也可能二者兼具. 然而已经有多款强大而且易于使用的开源平台开始兴起,欲彻底扭转目前的不利局面.其中最值得关注

storm - 简介

一 Storm简介 Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架,它原来是由BackType开发,后BackType被Twitter收购,将Storm作为Twitter的实时数据分析系统. 实时数据处理的应用场景很广泛,例如商品推荐,广告投放,它能根据当前情景上下文(用户偏好,地理位置,已发生的查询和点击等)来估计用户点击的可能性并实时做出调整. twitter列举了storm的三大作用领域: 1.信息流处理(Stream Processing) Storm可以用来实

大数据框架对比:Hadoop、Storm、Samza、Spark和Flink--容错机制(ACK,RDD,基于log和状态快照),消息处理at least once,exactly once两个是关键

分布式流处理是对无边界数据集进行连续不断的处理.聚合和分析.它跟MapReduce一样是一种通用计算,但我们期望延迟在毫秒或者秒级别.这类系统一般采用有向无环图(DAG). DAG是任务链的图形化表示,我们用它来描述流处理作业的拓扑.如下图,数据从sources流经处理任务链到sinks.单机可以运行DAG,但本篇文章主要聚焦在多台机器上运行DAG的情况. 关注点 当选择不同的流处理系统时,有以下几点需要注意的: 运行时和编程模型:平台框架提供的编程模型决定了许多特色功能,编程模型要足够处理各种