《唯品会峰值系统架构演变 》

唯品会每年最大力度的促销活动在4月19日,就是419(For One Night),意在告诉唯品会用户只有这一晚有这么大的折扣力度(本文中用“大促”就指代419) 。唯品会是一个闪购网站,用户来得越早,越能买到又便宜又好的东西,所以在大促的一开始,会涌入大量用户,形成系统流量峰值。

本文总结了唯品会419时日志平台遇到的问题和解决方案,同时根据实践经验,整理了在面对峰值前要做的准备。

唯品会的日志平台,包括消息中间件、计算和数据可视化。前两者和峰值系统相关度更大一些。在2013年419时,我们使用Flume来收集日志,RabbitMQ作为传输日志的消息中间件,用Storm和Redis进行计算,然后通过脚本将Redis的数据写入MySQL,前端从MySQL中获取数据做数据可视化。

在这次419之前,我们对这个系统并不是很有信心。一个原因是刚开始做这块内容,很多工具都不够成熟。另一个原因是在大促之前,我们还在开发新功能,既没有稳定运行一段时间,也没有做容量规划之类的事情。

最后的结果确实如此,4月19日0点,大量用户进入唯品会购物,系统计算开始出现延迟,最初是1分钟,后面逐渐扩大到10分钟,最后由于雪崩效应,整个集群垮了。在分布式系统中,“雪崩效应”指的是系统中一个小问题会逐渐扩大,最后造成整个集群宕机。前面这个例子,一开始的计算延迟是1分钟,这在可以接受的范围内,但因为这个延迟,系统需要付出更多的代价去计算,如此恶性循环,数据延迟会越来越大,最后导致整个集群宕机。

在大促之后,我们进行了全面分析,发现这个系统的瓶颈在于RabbitMQ和Storm。

作为整个平台输送数据的管道,RabbitMQ的性能直接决定了后端消费数据系统的消费能力。整个平台就像是大炮,大炮发射再快,输送炮弹的速度跟不上都没用。这次大促中,RabbitMQ的性能出了问题。我们需要处理的日志量是每秒15万条左右,而我们使用RabbitMQ的环境下,每一台RabbitMQ服务器大约能达1.2万条日志每秒,由4台机器组成RabbitMQ集群,所以当流量暴涨时,RabbitMQ服务器负载会变得很高,而produce/consume速度变慢。在当时的情况下,我们并不能判断这个Queue的堵塞是由于下游的Storm消费得慢,还是RabbitMQ本身慢造成。

再看Storm。在分析Storm出问题的原因之前,先先介绍一下使用Storm计算的内容:一是根据用户访问日志计算PV/UV;二是根据Nginx日志计算各个域的访问量、响应时间和4xx/5xx数。由于Storm在各个计算节点之间无法共享数据(不像Spark有broadcast),我们只能借助Redis来做一个类似MapReduce中的Reduce功能。为了让大家能深入了解,下面详细介绍一下如何使用Storm计算这些数据。

PV

在Redis中有不同的key,如b2c_pv和mobile_pv,对Storm中得到的每条日志进行逻辑判断决定是b2c还是mobile访问,再使用Redis的incr操作(incr[key],表示将key对应的value加1,如果key不存在,则在这个操作前,会先置为0)。

UV

我们计算的是每5分钟的UV,方法很简单。在Redis中有一个DB专门用来计算UV,Storm将每个用户的cid(标识用户唯一身份的id)incr到DB中,这样能保证一个cid对应一个key。最后汇总通过Redis的“keys

*”来获取DB中key的数目,这样就获取到了cid的数目。又因为我们计算的是5分钟的UV,所以还需要一个crontab,每5分钟将DB中的内容truncate掉。

计算Nginx日志

实际上,计算Nginx日志非常简单,就是分割和计算。将一条Nginx日志分割后,就能知道这次访问的状态码是什么,响应时间是多少。然后DB中会有不同的key,如domain是cart,那么cart域的响应时间在Redis

DB里的key就是cart_resp_time,访问量就是cart_count,2xx数量就是cart_2xx_count。根据从日志获取的值,我们会使用Redis的incrby来操作(incrby和incr类似,incr是value加1,incrby可以指定增加的数字)。然后在计算metrics时,脚本先获取当前的cart_count,然后sleep

1秒,再获取一次cart_count,这两个的差值是这1秒钟内cart域的访问量。同样的方法,可以获取这1秒的响应时间,与访问量相除,就可以计算出这1秒的平均响应时间。

介绍完计算逻辑,可以了解到,Storm的处理逻辑非常简单,主要工作就是“分割日志”和“操作Redis计数”。

为了判断到底是RabbitMQ慢还是Storm慢,我们先将Storm停了,然后用一个Python脚本向Queue发送数据和消费Queue里的数据,这样来减小Producer和Consumer性能对RabbitMQ的性能影响。这样测试后发现,每台RabbitMQ的吞吐大概是1w条数据每秒,而且负载很高。后来,我们使用Erlang的HiPE特性(即High
Performance Erlang),将性能提升20%,大概达到1.2w条数据每秒。但仍然不能满足我们的要求。我们要求达到15w
msg/s,加上25%的冗余,此时需要15×(1+25%)/1.2≈16台服务器,比较多。再考虑到唯品会正处于快速增长期,目前是15w
msg/s,很有可能明年就翻几番。使用RabbitMQ似乎不太符合我们的需求,因为在可预见的将来,需要大量服务器来支撑。此外,RabbitMQ对服务器的CPU消耗非常大。

RabbitMQ的消费者除了Storm外,还有Elastic-Search(ES)。使用ES来做日志的全文检索,包括Nginx日志和PHP错误日志,因为Nginx日志的计算只能帮助运维人员和开发人员定位到某个域出问题,再深入地分析,就要从出错时的日志入手了。我们的日志还会有一份全量流入HDFS,原本用日志的搜索直接从HDFS来获取,但发现用Hive查询速度非常慢,大约需要几分钟。ES是基于Solr的一个全文检索引擎,有一个很好用的前端Kibana。在这次大促中,由于前端的RabbitMQ挂了,所以ES没有受到很大的压力。

原文链接:https://mp.weixin.qq.com/s?__biz=MzAxNjAzMTQyMA==&mid=205406297&idx=1&sn=f57f621764400e84b070ba95180a070d&scene=21#wechat_redirect

原文地址:https://www.cnblogs.com/wjwjs/p/11053788.html

时间: 2024-11-20 21:54:16

《唯品会峰值系统架构演变 》的相关文章

CI框架源码阅读笔记3 全局函数Common.php

从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap引导文件都会最先引入全局函数,以便于之后的处理工作). 打开Common.php中,第一行代码就非常诡异: if ( ! defined('BASEPATH')) exit('No direct script access allowed'); 上一篇(CI框架源码阅读笔记2 一切的入口 index

IOS测试框架之:athrun的InstrumentDriver源码阅读笔记

athrun的InstrumentDriver源码阅读笔记 作者:唯一 athrun是淘宝的开源测试项目,InstrumentDriver是ios端的实现,之前在公司项目中用过这个框架,没有深入了解,现在回来记录下. 官方介绍:http://code.taobao.org/p/athrun/wiki/instrumentDriver/ 优点:这个框架是对UIAutomation的java实现,在代码提示.用例维护方面比UIAutomation强多了,借junit4的光,我们可以通过junit4的

Yii源码阅读笔记 - 日志组件

?使用 Yii框架为开发者提供两个静态方法进行日志记录: Yii::log($message, $level, $category);Yii::trace($message, $category); 两者的区别在于后者依赖于应用开启调试模式,即定义常量YII_DEBUG: defined('YII_DEBUG') or define('YII_DEBUG', true); Yii::log方法的调用需要指定message的level和category.category是格式为“xxx.yyy.z

源码阅读笔记 - 1 MSVC2015中的std::sort

大约寒假开始的时候我就已经把std::sort的源码阅读完毕并理解其中的做法了,到了寒假结尾,姑且把它写出来 这是我的第一篇源码阅读笔记,以后会发更多的,包括算法和库实现,源码会按照我自己的代码风格格式化,去掉或者展开用于条件编译或者debug检查的宏,依重要程度重新排序函数,但是不会改变命名方式(虽然MSVC的STL命名实在是我不能接受的那种),对于代码块的解释会在代码块前(上面)用注释标明. template<class _RanIt, class _Diff, class _Pr> in

CI框架源码阅读笔记5 基准测试 BenchMark.php

上一篇博客(CI框架源码阅读笔记4 引导文件CodeIgniter.php)中,我们已经看到:CI中核心流程的核心功能都是由不同的组件来完成的.这些组件类似于一个一个单独的模块,不同的模块完成不同的功能,各模块之间可以相互调用,共同构成了CI的核心骨架. 从本篇开始,将进一步去分析各组件的实现细节,深入CI核心的黑盒内部(研究之后,其实就应该是白盒了,仅仅对于应用来说,它应该算是黑盒),从而更好的去认识.把握这个框架. 按照惯例,在开始之前,我们贴上CI中不完全的核心组件图: 由于BenchMa

CI框架源码阅读笔记2 一切的入口 index.php

上一节(CI框架源码阅读笔记1 - 环境准备.基本术语和框架流程)中,我们提到了CI框架的基本流程,这里这次贴出流程图,以备参考: 作为CI框架的入口文件,源码阅读,自然由此开始.在源码阅读的过程中,我们并不会逐行进行解释,而只解释核心的功能和实现. 1.       设置应用程序环境 define('ENVIRONMENT', 'development'); 这里的development可以是任何你喜欢的环境名称(比如dev,再如test),相对应的,你要在下面的switch case代码块中

Apache Storm源码阅读笔记

欢迎转载,转载请注明出处. 楔子 自从建了Spark交流的QQ群之后,热情加入的同学不少,大家不仅对Spark很热衷对于Storm也是充满好奇.大家都提到一个问题就是有关storm内部实现机理的资料比较少,理解起来非常费劲. 尽管自己也陆续对storm的源码走读发表了一些博文,当时写的时候比较匆忙,有时候衔接的不是太好,此番做了一些整理,主要是针对TridentTopology部分,修改过的内容采用pdf格式发布,方便打印. 文章中有些内容的理解得益于徐明明和fxjwind两位的指点,非常感谢.

CI框架源码阅读笔记4 引导文件CodeIgniter.php

到了这里,终于进入CI框架的核心了.既然是"引导"文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.com/usr/reg 经过引导文件,实际上会交给Application中的UsrController控制器的reg方法去处理. 这之中,CodeIgniter.php做了哪些工作?我们一步步来看. 1.    导入预定义常量.框架环境初始化 之前的一篇博客(CI框架源码阅读笔记2 一切的入

jdk源码阅读笔记之java集合框架(二)(ArrayList)

关于ArrayList的分析,会从且仅从其添加(add)与删除(remove)方法入手. ArrayList类定义: p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Monaco } span.s1 { color: #931a68 } public class ArrayList<E> extends AbstractList<E> implements List<E> ArrayList基本属性: /** *

dubbo源码阅读笔记--服务调用时序

上接dubbo源码阅读笔记--暴露服务时序,继续梳理服务调用时序,下图右面红线流程. 整理了调用时序图 分为3步,connect,decode,invoke. 连接 AllChannelHandler.connected(Channel) line: 38 HeartbeatHandler.connected(Channel) line: 47 MultiMessageHandler(AbstractChannelHandlerDelegate).connected(Channel) line: