Java-CAS 与原子类

CAS(Compare and Swap),即比较并替换,实现并发算法时常用到的一种技术。

CAS 的思想很简单:三个参数,一个当前内存值 V、旧的预期值 A、即将更新的值 B,当且仅当预期值 A 和内存值 V 相同时,将内存值修改为 B 并返回 true,否则什么都不做,并返回 false。

和 CAS 相关的一个概念是原子操作。原子操作是不可被中断的一个或一系列操作。而 CAS 则是 Java 中保证原子操作的一种方式。

从 Java1.5 开始,JDK 的并发包里就提供了一些类来支持原子操作,都是以 Atomic 开头。

volatile 不能保证类似 i++ 这样操作的原子性,CAS 能够保证。

一、原子类使用

以 AtomicInteger 为例,常用 API:

  • public final int get():获取当前的值
  • public final int getAndSet(int newValue):获取当前的值,并设置新的值
  • public final int getAndIncrement():获取当前的值,并自增
  • public final int getAndDecrement():获取当前的值,并自减
  • public final int getAndAdd(int delta):获取当前的值,并加上预期的值

相比 Integer 的优势,多线程中让变量自增:

private volatile int count = 0;
// 若要线程安全执行执行 count++,需要加锁
public synchronized void increment() {
    count++;
}
public int getCount() {
    return count;
}

使用 AtomicInteger 后:

private AtomicInteger count = new AtomicInteger();
public void increment() {
    count.incrementAndGet();
}
// 使用 AtomicInteger 后,不需要加锁,也可以实现线程安全
public int getCount() {
    return count.get();
}

二、CAS 问题

CAS 方式为乐观锁,synchronized 为悲观锁。因此使用 CAS 解决并发问题通常情况下性能更优。

但使用 CAS 方式也会有几个问题:

1.循环时间长开销大

自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。

2.只能保证一个共享变量的原子操作

对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就需要用锁。

从 Java 1.5 开始,JDK 提供了 AtomicReference 类来保证引用对象之间的原子性。

3.ABA 问题

如果一个值原来是 A,变成了 B,又变成了 A,那么使用 CAS 进行检查时则会发现它的值没有发生变化,但是实际上却变化了。

解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么 A->B->A 就会变成 1A->2B->3A。

从 Java 1.5 开始,JDK 提供了 AtomicStampedReference、AtomicMarkableReference 类来解决 ABA 问题。

三、CAS 实现

public final int incrementAndGet() {
    return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}

public final int getAndAddInt(Object o, long offset, int delta) {
    int v;
    do {
        v = getIntVolatile(o, offset);
    } while (!compareAndSwapInt(o, offset, v, v + delta));
    return v;
}

public native int getIntVolatile(Object o, long offset);

public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);

最后调用的是 Unsafe 类的方法,主要是 compareAndSwapInt 方法,即 CAS。

查看 Unsafe 的实现:https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/fea2c7f50ce8/src/share/vm/prims/unsafe.cpp

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

其中核心方法为 Atomic::cmpxchg(x, addr, e),其中参数 x 是即将更新的值,参数 e 是原内存的值,参数 addr 为内存地址。

查看 Atomic 的实现:https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/fea2c7f50ce8/src/share/vm/runtime/atomic.cpp

#include "runtime/atomic.inline.hpp"

jbyte Atomic::cmpxchg(jbyte exchange_value, volatile jbyte* dest, jbyte compare_value) {
  assert(sizeof(jbyte) == 1, "assumption.");
  uintptr_t dest_addr = (uintptr_t)dest;
  uintptr_t offset = dest_addr % sizeof(jint);
  volatile jint* dest_int = (volatile jint*)(dest_addr - offset);
  jint cur = *dest_int;
  jbyte* cur_as_bytes = (jbyte*)(&cur);
  jint new_val = cur;
  jbyte* new_val_as_bytes = (jbyte*)(&new_val);
  new_val_as_bytes[offset] = exchange_value;
  while (cur_as_bytes[offset] == compare_value) {
    jint res = cmpxchg(new_val, dest_int, cur);
    if (res == cur) break;
    cur = res;
    new_val = cur;
    new_val_as_bytes[offset] = exchange_value;
  }
  return cur_as_bytes[offset];
}

查看 atomic_linux_x86.inline.hpp,不同系统、不同 CPU 有不同的实现:https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/fea2c7f50ce8/src/share/vm/runtime/atomic.inline.hpp

Linux 的 x86 实现:https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/fea2c7f50ce8/src/os_cpu/linux_x86/vm/atomic_linux_x86.inline.hpp

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
  int mp = os::is_MP();
  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
                    : "=a" (exchange_value)
                    : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                    : "cc", "memory");
  return exchange_value;
}

Windows 的 x86 实现:https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/fea2c7f50ce8/src/os_cpu/windows_x86/vm/atomic_windows_x86.inline.hpp

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
  // alternative for InterlockedCompareExchange
  int mp = os::is_MP();
  __asm {
    mov edx, dest
    mov ecx, exchange_value
    mov eax, compare_value
    LOCK_IF_MP(mp)
    cmpxchg dword ptr [edx], ecx
  }
}

// Adding a lock prefix to an instruction on MP machine
// VC++ doesn‘t like the lock prefix to be on a single line
// so we can‘t insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0  \
                       __asm je L0                             __asm _emit 0xF0                        __asm L0:


https://benjaminwhx.com/2018/05/03/%E3%80%90%E7%BB%86%E8%B0%88Java%E5%B9%B6%E5%8F%91%E3%80%91%E8%B0%88%E8%B0%88CAS/

https://www.cnblogs.com/noKing/p/9094983.html

原文地址:https://www.cnblogs.com/jhxxb/p/11533938.html

时间: 2024-08-30 18:28:13

Java-CAS 与原子类的相关文章

ava多线程系列 JUC原子类 CAS及原子类

根据数据类型,可以将JUC包中的原子操作类可以分为4类. 1. 基本类型: AtomicInteger, AtomicLong, AtomicBoolean ;2. 数组类型: AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray ;3. 引用类型: AtomicReference, AtomicStampedRerence, AtomicMarkableReference ;4. 对象的属性修改类型: AtomicIntegerFi

Java学习笔记—多线程(原子类,java.util.concurrent.atomic包,转载)

原子类 Java从JDK 1.5开始提供了java.util.concurrent.atomic包(以下简称Atomic包),这个包中 的原子操作类提供了一种用法简单.性能高效.线程安全地更新一个变量的方式. 因为变量的类型有很多种,所以在Atomic包里一共提供了13个类,属于4种类型的原子更 新方式,分别是原子更新基本类型.原子更新数组.原子更新引用和原子更新属性(字段). Atomic包里的类基本都是使用Unsafe实现的包装类 java.util.concurrent.atomic中的类

原子类通过(CAS和volatile)实现单共享变量的线程安全

对于CAS是一种有别于synchronized的一种乐观锁实现.是一种非阻塞锁算法.CAS通过与原始预期值进行比较来确定是否修改主内存中数据的一种方案.基于一个线程的失败或者挂起不应该影响其他线程的失败或挂起这样的前提,而提出硬件层次的实现数据处理的互斥.可以自动更新共享数据,而且能够检测到其他线程的干扰,而 compareAndSet() 就用这些代替了锁定.对于实现CAS的原子类(AtomicInteger等)不仅仅对于单个贡献变量保证了原子性,同时借助volatile变量让共享变量保持可见

原子类

原子类 java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程 原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读-改-写操作.AtomicInteger 表示一个int类型的值,并提供了 get 和 set 方法,这些 Volatile 类型的int变量在读取和写入上有着相同的内存语义.它还提供了一个原子的 compareAndSet 方法(如果该方法成功执行,那么将实现与读取/写入一个 volatile 变

Java多线程系列---“JUC原子类”01之 原子类的实现(CAS算法)

转自:https://blog.csdn.net/ls5718/article/details/52563959  & https://blog.csdn.net/mmoren/article/details/79185862(含部分修改) 在JDK 5之前Java语言是靠synchronized关键字保证同步的,这会导致有锁 锁机制存在以下问题: (1)在多线程竞争下,加锁.释放锁会导致比较多的上下文切换和调度延时,引起性能问题. (2)一个线程持有锁会导致其它所有需要此锁的线程挂起. (3)

java多线程系类:JUC原子类:04之AtomicReference原子类

概要 本章对AtomicReference引用类型的原子类进行介绍.内容包括:AtomicReference介绍和函数列表AtomicReference源码分析(基于JDK1.7.0_40)AtomicReference示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3514623.html AtomicReference介绍和函数列表 AtomicReference是作用是对"对象"进行原子操作. AtomicReference函数列

java多线程系类:JUC原子类:03之AtomicLongArray原子类

概要 AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray这3个数组类型的原子类的原理和用法相似.本章以AtomicLongArray对数组类型的原子类进行介绍.内容包括:AtomicLongArray介绍和函数列表AtomicLongArray源码分析(基于JDK1.7.0_40)AtomicLongArray示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3514604.html

java多线程系类:JUC原子类:05之AtomicIntegerFieldUpdater原子类

概要 AtomicIntegerFieldUpdater, AtomicLongFieldUpdater和AtomicReferenceFieldUpdater这3个修改类的成员的原子类型的原理和用法相似.本章以对基本类型的原子类进行介绍.内容包括:AtomicLongFieldUpdater介绍和函数列表AtomicLongFieldUpdater示例AtomicLongFieldUpdater源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.com

Java并发编程-非阻塞同步方式原子类(Atomic)的使用

非阻塞同步 在大多数情况下,我们为了实现线程安全都会使用Synchronized或lock来加锁进行线程的互斥同步,但互斥同步的最主要的问题就是进行线程的阻塞和唤醒所带来的性能问题,因此这种阻塞也称作阻塞同步.从处理问题的方式上说,互斥同步属于一种悲观的并发策略,总是认为只要不去做正确的同步措施,那就肯定会出现问题,无论共享数据是否真的会出现竞争,它都会进行加锁.用户态核心态转换.维护锁的计数器和检查是否有被阻塞的线程需要被唤醒等操作. 随着硬件指令集的发展,我们有了另一个选择:基于冲突检测的乐

JAVA多线程之JUC原子类

JUC原子类框架 JUC即是指:java.util.concurrent包. 基本类型: AtomicInteger, AtomicLong, AtomicBoolean ; 数组类型: AtomicIntegerArray, AtomicLongArray, AtomicReferenceArray ; 引用类型: AtomicReference, AtomicStampedRerence, AtomicMarkab- leReference ; 对象的属性修改类型: AtomicIntege