协程基础
一、引言
之前我们学习了线程、进程的概念,了解了在操作系统中进程是资源分配的最小单位,线程是CPU调度的最小单位。按道理来说我们已经算是把CPU的利用率提高很多了。但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。
随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。
为此我们需要先回顾下并发的本质:切换+保存状态。
CPU正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长。
ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态。
一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。
为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:
- yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
- send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
二、协程介绍
协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。
一句话说明什么是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。
需要强调的是:
- Python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到IO或执行时间过长就会被迫交出CPU执行权限,切换其他线程运行)
- 单线程内开启协程,一旦遇到IO,就会从应用程序级别(而非操作系统)控制切换,从此来提升效率(!!!非IO操作的切换与效率无关)
对比操作系统控制线程的切换,用户在单线程内控制协程的切换。
优点:
- 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
- 单线程内的久可以实现并发的效果,最大限度的利用CPU
缺点:
- 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程。
- 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程。
总结协程特点:
- 必须在只有一个单线程里是实现并发
- 修改共享数据不需要加锁
- 用户程序里自己保存多个控制流的上下文栈
- 附加:一个协程遇到IO操作自动切换到其他协程(如何实现检测IO、yield、greenlet都无法实现,就用到了gevent模块(select机制))
1.1通过yield实现协程
import time
def func1():
while True:
1000000+1
yield
def func2():
g = func1()
for i in range(100000000):
i+1
next(g)
start = time.time()
func2()
stop = time.time()
print(stop - start) # 28.522686004638672
### 对比通过yeild切换运行的时间反而比串行更消耗时间,这样实现的携程是没有意义的。
import time
def func1():
for i in range(100000000):
i+1
def func2():
for i in range(100000000):
i+1
start = time.time()
func1()
func2()
stop = time.time()
print(stop - start) # 17.141255140304565
1.2Gevent介绍
安装
pip3 install gevent
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
g2=gevent.spawn(func2)
g1.join() #等待g1结束
g2.join() #等待g2结束
或者上述两步合作一步:gevent.joinall([g1,g2])
g1.value#拿到func1的返回值
import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(2)
print('%s eat 2' %name)
def play(name):
print('%s play 1' %name)
gevent.sleep(1)
print('%s play 2' %name)
g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,name='egon')
g1.join()
g2.join()
#或者gevent.joinall([g1,g2])
print('主')
上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,
而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了
from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前
或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头
from gevent import monkey
monkey.patch_all()
import gevent
import time
def eat():
print('eat food 1')
time.sleep(2)
print('eat food 2')
def play():
print('play 1')
time.sleep(1)
print('play 2')
start = time.time()
g1 = gevent.spawn(eat)
g2 = gevent.spawn(play)
g1.join()
g2.join()
# gevent.joinall([g1,g2])
end = time.time() # 3.0165441036224365
# 如果打好了补丁 就可以识别非gevent.sleep阻塞进行切换
print(end-start)
原文地址:https://www.cnblogs.com/Lin2396/p/11568459.html