爬虫学习之第四章爬虫进阶之多线程爬虫

多线程爬虫

有些时候,比如下载图片,因为下载图片是一个耗时的操作。如果采用之前那种同步的方式下载。那效率肯会特别慢。这时候我们就可以考虑使用多线程的方式来下载图片。

多线程介绍:

多线程是为了同步完成多项任务,通过提高资源使用效率来提高系统的效率。线程是在同一时间需要完成多项任务的时候实现的。
最简单的比喻多线程就像火车的每一节车厢,而进程则是火车。车厢离开火车是无法跑动的,同理火车也可以有多节车厢。多线程的出现就是为了提高效率。同时它的出现也带来了一些问题。更多介绍请参考:https://baike.baidu.com/item/多线程/1190404?fr=aladdin

threading模块介绍:

threading模块是python中专门提供用来做多线程编程的模块。threading模块中最常用的类是Thread。以下看一个简单的多线程程序:

import threading
import time

def coding():
    for x in range(3):
        print(‘%s正在写代码‘ % x)
        time.sleep(1)

def drawing():
    for x in range(3):
        print(‘%s正在画图‘ % x)
        time.sleep(1)

def single_thread():
    coding()
    drawing()

def multi_thread():
    t1 = threading.Thread(target=coding)
    t2 = threading.Thread(target=drawing)

    t1.start()
    t2.start()

if __name__ == ‘__main__‘:
    multi_thread()

查看线程数:

使用threading.enumerate()函数便可以看到当前线程的数量。

查看当前线程的名字:

使用threading.current_thread()可以看到当前线程的信息。

继承自threading.Thread类:

为了让线程代码更好的封装。可以使用threading模块下的Thread类,继承自这个类,然后实现run方法,线程就会自动运行run方法中的代码。示例代码如下:

import threading
import time

class CodingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print(‘%s正在写代码‘ % threading.current_thread())
            time.sleep(1)

class DrawingThread(threading.Thread):
    def run(self):
        for x in range(3):
            print(‘%s正在画图‘ % threading.current_thread())
            time.sleep(1)

def multi_thread():
    t1 = CodingThread()
    t2 = DrawingThread()

    t1.start()
    t2.start()

if __name__ == ‘__main__‘:
    multi_thread()

多线程共享全局变量的问题:

多线程都是在同一个进程中运行的。因此在进程中的全局变量所有线程都是可共享的。这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。比如以下代码:

import threading

tickets = 0

def get_ticket():
    global tickets
    for x in range(1000000):
        tickets += 1
    print(‘tickets:%d‘%tickets)

def main():
    for x in range(2):
        t = threading.Thread(target=get_ticket)
        t.start()

if __name__ == ‘__main__‘:
    main()

以上结果正常来讲应该是6,但是因为多线程运行的不确定性。因此最后的结果可能是随机的。

锁机制:

为了解决以上使用共享全局变量的问题。threading提供了一个Lock类,这个类可以在某个线程访问某个变量的时候加锁,其他线程此时就不能进来,直到当前线程处理完后,把锁释放了,其他线程才能进来处理。示例代码如下:

import threading

VALUE = 0

gLock = threading.Lock()

def add_value():
    global VALUE
    gLock.acquire()
    for x in range(1000000):
        VALUE += 1
    gLock.release()
    print(‘value:%d‘%VALUE)

def main():
    for x in range(2):
        t = threading.Thread(target=add_value)
        t.start()

if __name__ == ‘__main__‘:
    main()

Lock版本生产者和消费者模式:

生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。但是因为要使用中间变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下是使用threading.Lock锁实现的“生产者与消费者模式”的一个例子:

import threading
import random
import time

gMoney = 1000
gLock = threading.Lock()
# 记录生产者生产的次数,达到10次就不再生产
gTimes = 0

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gLock.acquire()
            # 如果已经达到10次了,就不再生产了
            if gTimes >= 10:
                gLock.release()
                break
            gMoney += money
            print(‘%s当前存入%s元钱,剩余%s元钱‘ % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gLock.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gLock
        global gTimes
        while True:
            money = random.randint(100, 500)
            gLock.acquire()
            if gMoney > money:
                gMoney -= money
                print(‘%s当前取出%s元钱,剩余%s元钱‘ % (threading.current_thread(), money, gMoney))
                time.sleep(0.5)
            else:
                # 如果钱不够了,有可能是已经超过了次数,这时候就判断一下
                if gTimes >= 10:
                    gLock.release()
                    break
                print("%s当前想取%s元钱,剩余%s元钱,不足!" % (threading.current_thread(),money,gMoney))
            gLock.release()

def main():
    for x in range(5):
        Consumer(name=‘消费者线程%d‘%x).start()

    for x in range(5):
        Producer(name=‘生产者线程%d‘%x).start()

if __name__ == ‘__main__‘:
    main()

Condition版的生产者与消费者模式:

Lock版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition来实现。threading.Condition可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition相关的函数做个介绍,threading.Condition类似threading.Lock,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:

  1. acquire:上锁。
  2. release:解锁。
  3. wait:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notifynotify_all函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。
  4. notify:通知某个正在等待的线程,默认是第1个等待的线程。
  5. notify_all:通知所有正在等待的线程。notifynotify_all不会释放锁。并且需要在release之前调用。

Condition版的生产者与消费者模式代码如下:

import threading
import random
import time

gMoney = 1000
gCondition = threading.Condition()
gTimes = 0
gTotalTimes = 5

class Producer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        global gTimes
        while True:
            money = random.randint(100, 1000)
            gCondition.acquire()
            if gTimes >= gTotalTimes:
                gCondition.release()
                print(‘当前生产者总共生产了%s次‘%gTimes)
                break
            gMoney += money
            print(‘%s当前存入%s元钱,剩余%s元钱‘ % (threading.current_thread(), money, gMoney))
            gTimes += 1
            time.sleep(0.5)
            gCondition.notify_all()
            gCondition.release()

class Consumer(threading.Thread):
    def run(self):
        global gMoney
        global gCondition
        while True:
            money = random.randint(100, 500)
            gCondition.acquire()
            # 这里要给个while循环判断,因为等轮到这个线程的时候
            # 条件有可能又不满足了
            while gMoney < money:
                if gTimes >= gTotalTimes:
                    gCondition.release()
                    return
                print(‘%s准备取%s元钱,剩余%s元钱,不足!‘%(threading.current_thread(),money,gMoney))
                gCondition.wait()
            gMoney -= money
            print(‘%s当前取出%s元钱,剩余%s元钱‘ % (threading.current_thread(), money, gMoney))
            time.sleep(0.5)
            gCondition.release()

def main():
    for x in range(5):
        Consumer(name=‘消费者线程%d‘%x).start()

    for x in range(2):
        Producer(name=‘生产者线程%d‘%x).start()

if __name__ == ‘__main__‘:
    main()

Queue线程安全队列:

在线程中,访问一些全局变量,加锁是一个经常的过程。如果你是想把一些数据存储到某个队列中,那么Python内置了一个线程安全的模块叫做queue模块。Python中的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先进先出)队列Queue,LIFO(后入先出)队列LifoQueue。这些队列都实现了锁原语(可以理解为原子操作,即要么不做,要么都做完),能够在多线程中直接使用。可以使用队列来实现线程间的同步。相关的函数如下:

  1. 初始化Queue(maxsize):创建一个先进先出的队列。
  2. qsize():返回队列的大小。
  3. empty():判断队列是否为空。
  4. full():判断队列是否满了。
  5. get():从队列中取最后一个数据。
  6. put():将一个数据放到队列中。

使用生产者与消费者模式多线程下载表情包:

import threading
import requests
from lxml import etree
from urllib import request
import os
import re
from queue import Queue

class Producer(threading.Thread):
    headers = {
        ‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36‘
    }
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Producer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue

    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            self.parse_page(url)

    def parse_page(self,url):
        response = requests.get(url,headers=self.headers)
        text = response.text
        html = etree.HTML(text)
        imgs = html.xpath("//div[@class=‘page-content text-center‘]//a//img")
        for img in imgs:
            if img.get(‘class‘) == ‘gif‘:
                continue
            img_url = img.xpath(".//@data-original")[0]
            suffix = os.path.splitext(img_url)[1]
            alt = img.xpath(".//@alt")[0]
            alt = re.sub(r‘[,。??,/\\·]‘,‘‘,alt)
            img_name = alt + suffix
            self.img_queue.put((img_url,img_name))

class Consumer(threading.Thread):
    def __init__(self,page_queue,img_queue,*args,**kwargs):
        super(Consumer, self).__init__(*args,**kwargs)
        self.page_queue = page_queue
        self.img_queue = img_queue

    def run(self):
        while True:
            if self.img_queue.empty():
                if self.page_queue.empty():
                    return
            img = self.img_queue.get(block=True)
            url,filename = img
            request.urlretrieve(url,‘images/‘+filename)
            print(filename+‘  下载完成!‘)

def main():
    page_queue = Queue(100)
    img_queue = Queue(500)
    for x in range(1,101):
        url = "http://www.doutula.com/photo/list/?page=%d" % x
        page_queue.put(url)

    for x in range(5):
        t = Producer(page_queue,img_queue)
        t.start()

    for x in range(5):
        t = Consumer(page_queue,img_queue)
        t.start()

if __name__ == ‘__main__‘:
    main()

GIL全局解释器锁:

Python自带的解释器是CPythonCPython解释器的多线程实际上是一个假的多线程(在多核CPU中,只能利用一核,不能利用多核)。同一时刻只有一个线程在执行,为了保证同一时刻只有一个线程在执行,在CPython解释器中有一个东西叫做GIL(Global Intepreter Lock),叫做全局解释器锁。这个解释器锁是有必要的。因为CPython解释器的内存管理不是线程安全的。当然除了CPython解释器,还有其他的解释器,有些解释器是没有GIL锁的,见下面:

  1. Jython:用Java实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/Jython
  2. IronPython:用.net实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/IronPython
  3. PyPy:用Python实现的Python解释器。存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/PyPy
    GIL虽然是一个假的多线程。但是在处理一些IO操作(比如文件读写和网络请求)还是可以在很大程度上提高效率的。在IO操作上建议使用多线程提高效率。在一些CPU计算操作上不建议使用多线程,而建议使用多进程。

多线程下载百思不得姐段子作业:

import requests
from lxml import etree
import threading
from queue import Queue
import csv

class BSSpider(threading.Thread):
    headers = {
        ‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36‘
    }
    def __init__(self,page_queue,joke_queue,*args,**kwargs):
        super(BSSpider, self).__init__(*args,**kwargs)
        self.base_domain = ‘http://www.budejie.com‘
        self.page_queue = page_queue
        self.joke_queue = joke_queue

    def run(self):
        while True:
            if self.page_queue.empty():
                break
            url = self.page_queue.get()
            response = requests.get(url, headers=self.headers)
            text = response.text
            html = etree.HTML(text)
            descs = html.xpath("//div[@class=‘j-r-list-c-desc‘]")
            for desc in descs:
                jokes = desc.xpath(".//text()")
                joke = "\n".join(jokes).strip()
                link = self.base_domain+desc.xpath(".//a/@href")[0]
                self.joke_queue.put((joke,link))
            print(‘=‘*30+"第%s页下载完成!"%url.split(‘/‘)[-1]+"="*30)

class BSWriter(threading.Thread):
    headers = {
        ‘User-Agent‘: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36‘
    }

    def __init__(self, joke_queue, writer,gLock, *args, **kwargs):
        super(BSWriter, self).__init__(*args, **kwargs)
        self.joke_queue = joke_queue
        self.writer = writer
        self.lock = gLock

    def run(self):
        while True:
            try:
                joke_info = self.joke_queue.get(timeout=40)
                joke,link = joke_info
                self.lock.acquire()
                self.writer.writerow((joke,link))
                self.lock.release()
                print(‘保存一条‘)
            except:
                break

def main():
    page_queue = Queue(10)
    joke_queue = Queue(500)
    gLock = threading.Lock()
    fp = open(‘bsbdj.csv‘, ‘a‘,newline=‘‘, encoding=‘utf-8‘)
    writer = csv.writer(fp)
    writer.writerow((‘content‘, ‘link‘))

    for x in range(1,11):
        url = ‘http://www.budejie.com/text/%d‘ % x
        page_queue.put(url)

    for x in range(5):
        t = BSSpider(page_queue,joke_queue)
        t.start()

    for x in range(5):
        t = BSWriter(joke_queue,writer,gLock)
        t.start()

if __name__ == ‘__main__‘:
    main()

原文地址:https://www.cnblogs.com/lcy0302/p/10984277.html

时间: 2024-10-29 01:59:35

爬虫学习之第四章爬虫进阶之多线程爬虫的相关文章

《Linux内核设计与实现》第八周学习总结——第四章 进程调度

<Linux内核设计与实现>第八周学习总结——第四章 进程调度 第4章 进程调度35 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间,进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有通过调度程序的合理调度,系统资源才能最大限度地发挥作用,多进程才会有并发行的效果. 调度程序没有太复杂的原理,最大限度地利用处理器时间的原则是只要有可以执行的进程,那么就总会有进程正在执行,但是只要系统中可运行的进程的数目比处理器的个数多,就注定某一给定时刻会有一些进程不

“AS3.0高级动画编程”学习:第四章 寻路(AStar/A星/A*)算法 (上)

“AS3.0高级动画编程”学习:第四章 寻路(AStar/A星/A*)算法 (上) 原作者:菩提树下的杨过出处:http://yjmyzz.cnblogs.com 一提到“A*算法”,可能很多人都有"如雷贯耳"的感觉.用最白话的语言来讲:把游戏中的某个角色放在一个网格环境中,并给定一个目标点和一些障碍物,如何让角色快速“绕过障碍物”找出通往目标点的路径.(如下图) 在寻路过程中,角色总是不停从一个格子移动到另一个相邻的格子,如果单纯从距离上讲,移动到与自身斜对角的格子走的距离要长一些,

2019-2020-1学期 20192415 《网络空间安全专业导论》第一周学习总结 第四章

2019-2020-1学期 20192415 <网络空间安全专业导论>第二周学习总结 第四章 门与电路 硬件元件,用电信号表示操作二进制值 4.1 计算机与电学 信号电平区分信号的值: 0~2伏为低电压,由二进制数字0表示 2~5伏为高电压,由二进制数字1表示 门(gate):对电信号执行基本运算的设备. 电路(circuit):相互关联的门组合,用于实现特定的逻辑函数. 表示法: 布尔代数--用数学符号定义和操作逻辑电路 逻辑框图--图形化表示(特定) 真值表--列举,定义功能 注:三种表示

爬虫学习 17.基于scrapy-redis两种形式的分布式爬虫

爬虫学习 17.基于scrapy-redis两种形式的分布式爬虫 redis分布式部署 1.scrapy框架是否可以自己实现分布式? - 不可以.原因有二. 其一:因为多台机器上部署的scrapy会各自拥有各自的调度器,这样就使得多台机器无法分配start_urls列表中的url.(多台机器无法共享同一个调度器) 其二:多台机器爬取到的数据无法通过同一个管道对数据进行统一的数据持久出存储.(多台机器无法共享同一个管道) 2.基于scrapy-redis组件的分布式爬虫 ? - scrapy-re

python 学习_第四模块 并发编程(多线程)

python 学习_第四模块 并发编程(多线程) 1  开启线程方式 from threading import Thread import time def say(name): time.sleep(2) print("%s hello"%name) if __name__ =="__main__": t = Thread(target=say,args=("alex",)) t.start() print("主线程")

JavaScript学习笔记(第四章——第六章)

时间戳(2015-06-09 20:58:00) 第四章:变量.作用于和内存问题          typeof:判断元素是什么类型            instanceof:检测引用类型对象是否未指定类型          注:所有引用类型皆为Object的实例          JavaScript没有块级作用域:                    例1: if(true){ var color = “blue”; } alert(color);               // bl

第三周学习java第四章学习总结及体会!

第三周java 2第四章的学习总结: 一.主要内容(类与对象): 1.类: 2.构造方法与对象的创建: 3.类与程序的基本结构: 4.参数传值: 5.对象的组合: 6.实例成员与类成员: 7.方法重载: 8.this 关键字: 9.包: 10.import语句: 11.访问权限: 12.基本类型的类封装: 13.对象数组: 二.遇到的问题总结: 1:封装的时候不能直接一个retrun一个类,应该先clone. 2:PI,和System.IO都是静态常量. 3:类数组的需要两次new! 4:类名首

构建之法学习(第四章 两人合作)

第四章 两人合作 1.代码规范  1)代码风格规范.主要是文字上的规定,看似表面文章,实际上非常重要. *原则:简明,易读,无二义性 *缩进:4个空格 *行宽:行宽必须限制,可以限定为100字符 *括号:在复杂的条件表达式中,用括号清除地表示逻辑优先级 *断行与空白的{}行:推荐格式如下 if ( condition ) {        DoSomething(); } else {       DoSomethingElse(); } *分行:不要把多条语句放在一行上.并且,不要把多个变量定

Java学习笔记—第四章

第四章  变量和常量 1. Java的访问控制修饰符 使用访问控制修饰符可以限制数据的访问权限.访问控制修饰符有4个等级:private.protected.    public和默认(不指定修饰符). 类型/权限 private protected public 默认 所属类 可访问 可访问 可访问 可访问 同一个包中的其他类(包括子类) 不可访问 可访问 可访问 可访问 不同包中的子类 不可访问 可访问 可访问 不可访问 不同包中的非子类 不可访问 不可访问 可访问 不可访问 2. 变量:变