Cable master(二分题 注意精度)

Cable master

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26596   Accepted: 5673

Description

Inhabitants of the Wonderland have decided to hold a regional programming contest. The Judging Committee has volunteered and has promised to organize the most honest contest ever. It was decided to connect computers for the contestants using a "star" topology - i.e. connect them all to a single central hub. To organize a truly honest contest, the Head of the Judging Committee has decreed to place all contestants evenly around the hub on an equal distance from it.
To buy network cables, the Judging Committee has contacted a local
network solutions provider with a request to sell for them a specified
number of cables with equal lengths. The Judging Committee wants the
cables to be as long as possible to sit contestants as far from each
other as possible.

The Cable Master of the company was assigned to the task. He knows
the length of each cable in the stock up to a centimeter,and he can cut
them with a centimeter precision being told the length of the pieces he
must cut. However, this time, the length is not known and the Cable
Master is completely puzzled.

You are to help the Cable Master, by writing a program that will
determine the maximal possible length of a cable piece that can be cut
from the cables in the stock, to get the specified number of pieces.

Input

The
first line of the input file contains two integer numb ers N and K,
separated by a space. N (1 = N = 10000) is the number of cables in the
stock, and K (1 = K = 10000) is the number of requested pieces. The
first line is followed by N lines with one number per line, that specify
the length of each cable in the stock in meters. All cables are at
least 1 meter and at most 100 kilometers in length. All lengths in the
input file are written with a centimeter precision, with exactly two
digits after a decimal point.

Output

Write
to the output file the maximal length (in meters) of the pieces that
Cable Master may cut from the cables in the stock to get the requested
number of pieces. The number must be written with a centimeter
precision, with exactly two digits after a decimal point.

If it is not possible to cut the requested number of pieces each one
being at least one centimeter long, then the output file must contain
the single number "0.00" (without quotes).

Sample Input

4 11
8.02
7.43
4.57
5.39

Sample Output

2.00

给出n条绳子的长度,从这些绳子中切割出k条绳子,求能切割出的最大长度,保留两位小数。   设C(X)表示能否切割出长度为x的K条绳子。 二分枚举X就行了。
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <string>
 7 #include <vector>
 8 #include <set>
 9 #include <map>
10 #include <queue>
11 #include <stack>
12 #include <sstream>
13 #include <iomanip>
14 using namespace std;
15 const int INF=0x4fffffff;
16 const int EXP=1e-6;
17 const int MS=10005;
18
19 int N,K;
20 double len[MS];
21
22 bool judge(double x)
23 {
24       int cnt=0;
25       for(int i=1;i<=N;i++)
26             cnt+=(int)(len[i]/x+EXP);
27       return cnt>=K;
28 }
29
30 void solve()
31 {
32       double l=0.0,r=MS*10.0;
33       double mid;
34       for(int i=0;i<100;i++)
35       {
36             mid=(l+r)/2;
37             if(judge(mid))
38                   l=mid;
39             else
40                   r=mid;     //   注意这里是double。
41       }
42      printf("%.2lf\n",floor(mid*100)/100);
43       //  千万注意精度
44     //  printf("%.2lf\n",mid);            WA
45 }
46
47 int main()
48 {
49       scanf("%d%d",&N,&K);
50       for(int i=1;i<=N;i++)
51             scanf("%lf",&len[i]);
52       solve();
53       return 0;
54 }
				
时间: 2024-10-08 18:21:55

Cable master(二分题 注意精度)的相关文章

(poj)1064 Cable master 二分+精度

题目链接:http://poj.org/problem?id=1064 Description Inhabitants of the Wonderland have decided to hold a regional programming contest. The Judging Committee has volunteered and has promised to organize the most honest contest ever. It was decided to conn

POJ 1064 Cable master (二分 分数化整数)

Cable master Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28764   Accepted: 6091 Description Inhabitants of the Wonderland have decided to hold a regional programming contest. The Judging Committee has volunteered and has promised to

hdu 1551 Cable master(二分)

Cable master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 2003    Accepted Submission(s): 751 Problem Description Inhabitants of the Wonderland have decided to hold a regional programming co

Cable master(二分)

Cable master Time Limit: 1000/500 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 30     Accepted Submission(s): 15 Special Judge Description Inhabitants of the Wonderland have decided to hold a regional programmin

POJ 1064 Cable master (二分)

题意:给定 n 条绳子,它们的长度分别为 ai,现在要从这些绳子中切出 m 条长度相同的绳子,求最长是多少. 析:其中就是一个二分的水题,但是有一个坑,那么就是最后输出不能四舍五入,只能向下取整. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include &l

POJ 1064 Cable master (二分答案)

题目链接:http://poj.org/problem?id=1064 有n条绳子,长度分别是Li.问你要是从中切出m条长度相同的绳子,问你这m条绳子每条最长是多少. 二分答案,尤其注意精度问题.我觉得关于浮点数的二分for循环比while循环更好一点.注意最后要用到floor 保证最后答案不会四舍五入. 1 #include <iostream> 2 #include <cstdio> 3 #include <cmath> 4 using namespace std;

[POJ] 1064 Cable master (二分查找)

题目地址:http://poj.org/problem?id=1064 有N条绳子,它们的长度分别为Ai,如果从它们中切割出K条长度相同的绳子,这K条绳子每条最长能有多长. 二分绳子长度,然后验证即可.复杂度o(nlogm) 1 #include<cstdio> 2 #include<iostream> 3 #include<string.h> 4 #include<algorithm> 5 #include<math.h> 6 #include

POJ1064 Cable master(二分)

本题用二分搜索能够非常easy的求出答案.设条件C(X)为能够得到K条长度为X的绳子,C(x)=(floor(L(i)/x)).X的初始范围为(0,Max(L(i))+1). #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; double a[10005]; int n,k;

POJ 1064 Cable master(二分查找+精度)(神坑题)

POJ 1064 Cable master 一开始把 int C(double x) 里面写成了  int C(int x) ,莫名奇妙竟然过了样例,交了以后直接就wa. 后来发现又把二分查找的判断条件写错了,wa了n次,当 c(mid)<=k时,令ub=mid,这个判断是错的,因为要找到最大切割长度,当满足这个条件时,可能已经不是最大长度了,此时还继续缩小区间,自然就wa了,(从大到小递减,第一次满足这个条件的值,就是最大的值),正确的判断是当 c(mid)<k时,令ub=mid,这样循环1