JMM规范

JMM规范:

The rules for happens-before are:

Program order rule. Each action in a thread happens-before every action in that thread that comes later in the program order.

Monitor lock rule. An unlock on a monitor lock happens-before every subsequent lock on that same monitor lock.

Volatile variable rule. A write to a volatile field happens-before every subsequent read of that same field.

Thread start rule. A call to Thread.start on a thread happens-before every action in the started thread.

Thread termination rule. Any action in a thread happens-before any other thread detects that thread has terminated, either by successfully return from Thread.join or by Thread.isAlive returning false.

Interruption rule. A thread calling interrupt on another thread happens-before the interrupted thread detects the interrupt (either by having InterruptedException tHRown, or invoking isInterrupted or interrupted).

Finalizer rule. The end of a constructor for an object happens-before the start of the finalizer for that object.

Transitivity. If A happens-before B, and B happens-before C, then A happens-before C.

appens-before完整规则:

(1)同一个线程中的每个Action都happens-before于出现在其后的任何一个Action。

(2)对一个监视器的解锁happens-before于每一个后续对同一个监视器的加锁。

(3)对volatile字段的写入操作happens-before于每一个后续的同一个字段的读操作。

(4)Thread.start()的调用会happens-before于启动线程里面的动作。

(5)Thread中的所有动作都happens-before于其他线程检查到此线程结束或者Thread.join()中返回或者Thread.isAlive()==false。

(6)一个线程A调用另一个另一个线程B的interrupt()都happens-before于线程A发现B被A中断(B抛出异常或者A检测到B的isInterrupted()或者interrupted())。

(7)一个对象构造函数的结束happens-before与该对象的finalizer的开始

(8)如果A动作happens-before于B动作,而B动作happens-before与C动作,那么A动作happens-before于C动作。

----------------------------

什么是happens-before? 
happens-before就是“什么什么一定在什么什么之前运行”,也就是保证顺序性。 
因为CPU是可以不按我们写代码的顺序执行内存的存取过程的,也就是指令会乱序或并行运行, 
只有上面的happens-before所规定的情况下,才保证顺序性。 
如:

Java代码

  1. public class Test {
  2. private int a = 0;
  3. private long b = 0;
  4. public void set() {
  5. a = 1;
  6. b = -1;
  7. }
  8. public void check() {
  9. if (! ((b == 0) || (b == -1 && a == 1))
  10. throw new Exception("check Error!");
  11. }
  12. }

对于set()方法的执行: 
1. 编译器可以重新安排语句的执行顺序,这样b就可以在a之前赋值。如果方法是内嵌的(inline),编译器还可以把其它语句重新排序。 
2. 处理器可以改变这些语句的机器指令的执行顺序,甚到同时执行这些语句。 
3. 存储系统(由于被缓存控制单元控制)也可以重新安排对应存储单元的写操作顺序,这些写操作可能与其他计算和存储操作同时发生。 
4. 编译器,处理器和存储系统都可以把这两条语句的机器指令交叉执行。 
例如:在一台32位的机器上,可以先写b的高位,然后写a,最后写b的低位,(注:b为long类型,在32位的机器上分高低位存储) 
5. 编译器,处理器和存储系统都可以使对应于变量的存储单元一直保留着原来的值, 
以某种方式维护相应的值(例如,在CPU的寄存器中)以保证代码正常运行,直到下一个check调用才更新。 
... 
在单线程(或同步)的情况下,上面的check()永远不会报错, 
但非同步多线程运行时却很有可能。

并且,多个CPU之间的缓存也不保证实时同步, 
也就是说你刚给一个变量赋值,另一个线程立即获取它的值,可能拿到的却是旧值(或null), 
因为两个线程在不同的CPU执行,它们看到的缓存值不一样, 
只有在synchronized或volatile或final的性况下才能保证正确性, 
很多人用synchronized时只记得有lock的功能,而忘记了线程间的可见性问题。 
如:

Java代码

  1. public class Test {
  2. private int n;
  3. public void set(int n) {
  4. this.n = n;
  5. }
  6. public void check() {
  7. if (n != n)
  8. throw new Exception("check Error!");
  9. }
  10. }

check()中的 n != n 好像永远不会成立,因为他们指向同一个值,但非同步时却很有可能发生。

另外,JMM不保证创建过程的原子性,读写并发时,可能看到不完整的对象, 
这也是为什么单例模式中著名的"双重检查成例"方法,在Java中行不通。(但.Net的内存模型保证这一点) 
当然,在Java中单例的延迟加载可以用另一种方案实现(方案四):

方案一:非延迟加载单例类

Java代码

  1. public class Singleton {
  2.   private Singleton(){}
  3.   private static final Singleton instance = new Singleton();
  4.   public static Singleton getInstance() {
  5.     return instance;   
  6.   }
  7. }

方案二:简单的同步延迟加载

Java代码

  1. public class Singleton {
  2.   private static Singleton instance = null;
  3.   public static synchronized Singleton getInstance() {
  4.     if (instance == null)
  5.       instance = new Singleton();
  6.     return instance;   
  7.   }
  8. }

方案三:双重检查成例延迟加载 
目的是避开过多的同步, 
但在Java中行不通,因为同步块外面的if (instance == null)可能看到已存在,但不完整的实例。 
JDK5.0以后版本若instance为volatile则可行

Java代码

  1. public class Singleton {
  2.   private static Singleton instance = null;
  3.   public static Singleton getInstance() {
  4.     if (instance == null) {
  5.         synchronized (Singleton.class) {
  6.             if (instance == null) {
  7.                 instance = new Singleton();
  8.             }
  9.         }
  10.     }
  11.     return instance;   
  12.   }
  13. }

方案四:类加载器延迟加载

Java代码

    1. public class Singleton {
    2.   private static class Holder {
    3.     static final Singleton instance = new Singleton();
    4.   }
    5.   public static Singleton getInstance() {
    6.     return Holder.instance;   
    7.   }
    8. }

JMM规范

时间: 2024-11-05 21:43:46

JMM规范的相关文章

深入理解JMM(Java内存模型) --(三)顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.Java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)-

Java并发指南2:深入理解Java内存模型JMM

一:JMM基础与happens-before 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程序用于控制不同

深入理解Java内存模型(三)——顺序一致性

本文属于作者原创,原文发表于InfoQ:http://www.infoq.com/cn/articles/java-memory-model-3 数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正

java内存模型二

并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程序用于控制不同线程之间操作发生相对顺序的机制.在共享内存并发

深入理解java内存模型

深入理解Java内存模型(一)——基础 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程序用于控制不同线程之

Java多线程并发编程

Thread和Runnable Runnable接口可以避免继承自Thread类的单继承的局限性. Runnable的代码可以被多个线程(Thread的实例)所共享,适合于多个线程共享资源(其实就是持有同一个runnable实例)的情况. 以火车站买票为例,分别以继承Thread类和实现Runnable接口这两种方式来模拟3个线程卖5张票: 使用Thread类模拟卖票 1 class MyThread extends Thread{ 2 3 private int ticketCount = 5

【转】深入理解Java内存模型(三)——顺序一致性

数据竞争与顺序一致性保证 当程序未正确同步时,就会存在数据竞争.java内存模型规范对数据竞争的定义如下: 在一个线程中写一个变量, 在另一个线程读同一个变量, 而且写和读没有通过同步来排序. 当代码中包含数据竞争时,程序的执行往往产生违反直觉的结果(前一章的示例正是如此).如果一个多线程程序能正确同步,这个程序将是一个没有数据竞争的程序. JMM对正确同步的多线程程序的内存一致性做了如下保证: 如果程序是正确同步的,程序的执行将具有顺序一致性(sequentially consistent)-

ConcurrentHashMap实现原理--转载

原文地址:http://ajax-xu.iteye.com/blog/1104649 ConcurrentHashMap是Java 5中支持高并发.高吞吐量的线程安全HashMap实现.在这之前我对ConcurrentHashMap只有一些肤浅的理解,仅知道它采用了多个锁,大概也足够了.但是在经过一次惨痛的面试经历之后,我觉得必须深入研究它的实现.面试中被问到读是否要加锁,因为读写会发生冲突,我说必须要加锁,我和面试官也因此发生了冲突,结果可想而知.还是闲话少说,通过仔细阅读源代码,现在总算理解

Java内存模型(转)

深入理解Java内存模型(一)——基础 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来交换信息.在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序的公共状态,线程之间通过写-读内存中的公共状态来隐式进行通信.在消息传递的并发模型里,线程之间没有公共状态,线程之间必须通过明确的发送消息来显式进行通信. 同步是指程序用于控制不同线程之