python 实现识别手写 MNIST数字集的程序

我们需要做的第?件事情是获取 MNIST 数据。如果你是?个 git ??,那么你能够

通过克隆这本书的代码仓库获得数据,

实现我们的?络来分类数字

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

class Network(object):
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

在这段代码中,列表 sizes 包含各层神经元的数量。例如,如果我们想创建?个在第?层有

2 个神经元,第?层有 3 个神经元,最后层有 1 个神经元的 Network 对象,我们应这样写代码:

net = Network([2, 3, 1])

Network 对象中的偏置和权重都是被随机初始化的,使? Numpy 的 np.random.randn 函数来?

成均值为 0,标准差为 1 的?斯分布。这样的随机初始化给了我们的随机梯度下降算法?个起

点。在后?的章节中我们将会发现更好的初始化权重和偏置的?法,但是?前随机地将其初始

化。注意 Network 初始化代码假设第?层神经元是?个输?层,并对这些神经元不设置任何偏置,

因为偏置仅在后?的层中?于计算输出。

有了这些,很容易写出从?个 Network 实例计算输出的代码。我们从定义 S 型函数开始:

def sigmoid(z):
return 1.0/(1.0+np.exp(-z))

注意,当输? z 是?个向量或者 Numpy 数组时,Numpy ?动地按元素应? sigmoid 函数,即

以向量形式。

我们然后对 Network 类添加?个 feedforward ?法,对于?络给定?个输? a,返回对应的输

出 6 。这个?法所做的是对每?层应??程 (22):

def feedforward(self, a):
"""Return the output of the network if "a" is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

当然,我们想要 Network 对象做的主要事情是学习。为此我们给它们?个实现随即梯度下降

算法的 SGD ?法。代码如下。其中?些地?看似有?点神秘,我会在代码后?逐个分析

def SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
gradient descent. The "training_data" is a list of tuples
"(x, y)" representing the training inputs and the desired
outputs. The other non-optional parameters are
self-explanatory. If "test_data" is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out. This is useful for
tracking progress, but slows things down substantially."""
if test_data: n_test = len(test_data)
n = len(training_data)
for j in xrange(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in xrange(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test_data), n_test)
else:
print "Epoch {0} complete".format(j)

training_data 是?个 (x, y) 元组的列表,表?训练输?和其对应的期望输出。变量 epochs 和

mini_batch_size 正如你预料的——迭代期数量,和采样时的?批量数据的??。 eta 是学习速率,

η。如果给出了可选参数 test_data ,那么程序会在每个训练器后评估?络,并打印出部分进展。

这对于追踪进度很有?,但相当拖慢执?速度。

在每个迭代期,它?先随机地将训练数据打乱,然后将它分成多个适当?

?的?批量数据。这是?个简单的从训练数据的随机采样?法。然后对于每?个 mini_batch

我们应??次梯度下降。这是通过代码 self.update_mini_batch(mini_batch, eta) 完成的,它仅

仅使? mini_batch 中的训练数据,根据单次梯度下降的迭代更新?络的权重和偏置。这是

update_mini_batch ?法的代码:

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The "mini_batch" is a list of tuples "(x, y)", and "eta"
is the learning rate."""
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

?部分?作由这?代码完成:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

这?调?了?个称为反向传播的算法,?种快速计算代价函数的梯度的?法。因此

update_mini_batch 的?作仅仅是对 mini_batch 中的每?个训练样本计算梯度,然后适当地更

新 self.weights 和 self.biases 。

我现在不会列出 self.backprop 的代码。我们将在下章中学习反向传播是怎样?作的,包括

self.backprop 的代码。现在,就假设它按照我们要求的?作,返回与训练样本 x 相关代价的适

当梯度

完整的程序

"""
network.py
~~~~~~~~~~

A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network.  Gradients are calculated
using backpropagation.  Note that I have focused on making the code
simple, easily readable, and easily modifiable.  It is not optimized,
and omits many desirable features.
"""

#### Libraries
# Standard library
import random

# Third-party libraries
import numpy as np

class Network(object):

    def __init__(self, sizes):
        """The list ``sizes`` contains the number of neurons in the
        respective layers of the network.  For example, if the list
        was [2, 3, 1] then it would be a three-layer network, with the
        first layer containing 2 neurons, the second layer 3 neurons,
        and the third layer 1 neuron.  The biases and weights for the
        network are initialized randomly, using a Gaussian
        distribution with mean 0, and variance 1.  Note that the first
        layer is assumed to be an input layer, and by convention we
        won't set any biases for those neurons, since biases are only
        ever used in computing the outputs from later layers."""
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)
                        for x, y in zip(sizes[:-1], sizes[1:])]

    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):
        """Train the neural network using mini-batch stochastic
        gradient descent.  The ``training_data`` is a list of tuples
        ``(x, y)`` representing the training inputs and the desired
        outputs.  The other non-optional parameters are
        self-explanatory.  If ``test_data`` is provided then the
        network will be evaluated against the test data after each
        epoch, and partial progress printed out.  This is useful for
        tracking progress, but slows things down substantially."""
        if test_data: n_test = len(test_data)
        n = len(training_data)
        for j in xrange(epochs):
            random.shuffle(training_data)
            mini_batches = [
                training_data[k:k+mini_batch_size]
                for k in xrange(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                print "Epoch {0}: {1} / {2}".format(
                    j, self.evaluate(test_data), n_test)
            else:
                print "Epoch {0} complete".format(j)

    def update_mini_batch(self, mini_batch, eta):
        """Update the network's weights and biases by applying
        gradient descent using backpropagation to a single mini batch.
        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
        is the learning rate."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb
                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):
        """Return a tuple ``(nabla_b, nabla_w)`` representing the
        gradient for the cost function C_x.  ``nabla_b`` and
        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
        to ``self.biases`` and ``self.weights``."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) *             sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        # Note that the variable l in the loop below is used a little
        # differently to the notation in Chapter 2 of the book.  Here,
        # l = 1 means the last layer of neurons, l = 2 is the
        # second-last layer, and so on.  It's a renumbering of the
        # scheme in the book, used here to take advantage of the fact
        # that Python can use negative indices in lists.
        for l in xrange(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

    def evaluate(self, test_data):
        """Return the number of test inputs for which the neural
        network outputs the correct result. Note that the neural
        network's output is assumed to be the index of whichever
        neuron in the final layer has the highest activation."""
        test_results = [(np.argmax(self.feedforward(x)), y)
                        for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def cost_derivative(self, output_activations, y):
        """Return the vector of partial derivatives \partial C_x /
        \partial a for the output activations."""
        return (output_activations-y)

#### Miscellaneous functions
def sigmoid(z):
    """The sigmoid function."""
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """Derivative of the sigmoid function."""
    return sigmoid(z)*(1-sigmoid(z))
"""
mnist_loader
~~~~~~~~~~~~

A library to load the MNIST image data.  For details of the data
structures that are returned, see the doc strings for ``load_data``
and ``load_data_wrapper``.  In practice, ``load_data_wrapper`` is the
function usually called by our neural network code.
"""

#### Libraries
# Standard library
import cPickle
import gzip

# Third-party libraries
import numpy as np

def load_data():
    """Return the MNIST data as a tuple containing the training data,
    the validation data, and the test data.

    The ``training_data`` is returned as a tuple with two entries.
    The first entry contains the actual training images.  This is a
    numpy ndarray with 50,000 entries.  Each entry is, in turn, a
    numpy ndarray with 784 values, representing the 28 * 28 = 784
    pixels in a single MNIST image.

    The second entry in the ``training_data`` tuple is a numpy ndarray
    containing 50,000 entries.  Those entries are just the digit
    values (0...9) for the corresponding images contained in the first
    entry of the tuple.

    The ``validation_data`` and ``test_data`` are similar, except
    each contains only 10,000 images.

    This is a nice data format, but for use in neural networks it's
    helpful to modify the format of the ``training_data`` a little.
    That's done in the wrapper function ``load_data_wrapper()``, see
    below.
    """
    f = gzip.open('../data/mnist.pkl.gz', 'rb')
    training_data, validation_data, test_data = cPickle.load(f)
    f.close()
    return (training_data, validation_data, test_data)

def load_data_wrapper():
    """Return a tuple containing ``(training_data, validation_data,
    test_data)``. Based on ``load_data``, but the format is more
    convenient for use in our implementation of neural networks.

    In particular, ``training_data`` is a list containing 50,000
    2-tuples ``(x, y)``.  ``x`` is a 784-dimensional numpy.ndarray
    containing the input image.  ``y`` is a 10-dimensional
    numpy.ndarray representing the unit vector corresponding to the
    correct digit for ``x``.

    ``validation_data`` and ``test_data`` are lists containing 10,000
    2-tuples ``(x, y)``.  In each case, ``x`` is a 784-dimensional
    numpy.ndarry containing the input image, and ``y`` is the
    corresponding classification, i.e., the digit values (integers)
    corresponding to ``x``.

    Obviously, this means we're using slightly different formats for
    the training data and the validation / test data.  These formats
    turn out to be the most convenient for use in our neural network
    code."""
    tr_d, va_d, te_d = load_data()
    training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
    training_results = [vectorized_result(y) for y in tr_d[1]]
    training_data = zip(training_inputs, training_results)
    validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
    validation_data = zip(validation_inputs, va_d[1])
    test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
    test_data = zip(test_inputs, te_d[1])
    return (training_data, validation_data, test_data)

def vectorized_result(j):
    """Return a 10-dimensional unit vector with a 1.0 in the jth
    position and zeroes elsewhere.  This is used to convert a digit
    (0...9) into a corresponding desired output from the neural
    network."""
    e = np.zeros((10, 1))
    e[j] = 1.0
    return e
# test network.py    "cost function square func"
import mnist_loader
training_data, validation_data, test_data = mnist_loader.load_data_wrapper()
import network
net = network.Network([784,  10])
net.SGD(training_data, 5, 10, 5.0, test_data=test_data)
时间: 2024-10-29 10:48:34

python 实现识别手写 MNIST数字集的程序的相关文章

《神经网络和深度学习》系列文章一:使用神经网络识别手写数字

出处: Michael Nielsen的<Neural Network and Deep Leraning> 本节译者:哈工大SCIR硕士生 徐梓翔 (https://github.com/endyul) 声明:我们将不定期连载该书的中文翻译,如需转载请联系[email protected],未经授权不得转载. “本文转载自[哈工大SCIR]微信公众号,转载已征得同意.” 使用神经网络识别手写数字 感知机 sigmoid神经元 神经网络的结构 用简单的网络结构解决手写数字识别 通过梯度下降法学

Python神经网络是这样识别手写字符哒?

点击关注异步图书,置顶公众号 每天与你分享 IT好书 技术干货 职场知识 参与文末话题讨论,每日赠送异步图书 --异步小编 当谷歌的AlphaGo战胜了人类顶级棋手,人工智能开始更多进入大众视野.而谷歌AI教父认为:"AlphaGo有直觉神经网络已接近大脑". 千百年来,人类试图了解智能的机制,并将它复制到思维机器上.而从不满足于让机械或电子设备帮助做一些简单的任务,例如,使用燧石打火,使用滑轮吊起沉重的岩石,使用计算器做算术. 相反,我们希望能够自动化执行更具有挑战性.相对复杂的任务

python实现KNN,识别手写数字

写了识别手写数字的KNN算法,如下图所示.参考链接http://blog.csdn.net/april_newnew/article/details/44176059. # -*- coding: utf-8 -*- import numpy as np import pandas as pd import os def readtxt(filename): text=[] f = open(filename,'r',encoding='utf-8') for line in f.readlin

学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字

TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology database),简单机器视觉数据集,28X28像素手写数字,只有灰度值信息,空白部分为0,笔迹根据颜色深浅取[0, 1], 784维,丢弃二维空间信息,目标分0~9共10类.数据加载,data.read_data_sets, 55000个样本,测试集10000样本,验证集5000样本.样本标注信

用BP人工神经网络识别手写数字

http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档 在手机打开 赖勇浩( http://laiyonghao.com ) 这是我读工

第6章 识别手写字体

前言 神经网络是一种很特别的解决问题的方法.本书将用最简单易懂的方式与读者一起从最简单开始,一步一步深入了解神经网络的基础算法.本书将尽量避开让人望而生畏的名词和数学概念,通过构造可以运行的Java程序来实践相关算法. 关注微信号"javaresearcher"来获取本书的更多信息. 这一章节我们将会解决一个真正的问题:手写字体识别.我们将识别像下面图中这样的手写数字. 在开始之前,我们先要准备好相应的测试数据.我们不能像前边那样简单的产生手写字体,毕竟我们自己还不知道如何写出一个产生

一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)

笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&locationNum=5 Tensorflow官方英文文档地址:https://www.tensorflow.org/get_started/mnist/beginners 本文整理时官方文档最近更新时间:2017年2月15日 1.案例背景 本文是跟着Tensorflow官方文档的第二篇教程–识别手

12 使用卷积神经网络识别手写数字

看代码: 1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 # 下载训练和测试数据 5 mnist = input_data.read_data_sets('MNIST_data/', one_hot = True) 6 7 # 创建session 8 sess = tf.Session() 9 10 # 占位符 11 x = tf.placeholder(tf.f

TensorFlow实战之Softmax Regression识别手写数字

     关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.csdn.net/qq_37608890/article/details/79343860).        本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.MNIST MNIST(Mixed