Chang'an(Hack-01分数规划)

01分数规划

#include <bits/stdc++.h>

using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define ForkD(i,k,n) for(int i=n;i>=k;i--)
#define MAXN (200000)
#define eps (1e-6)
int T;
int f[MAXN],g[MAXN];
double e[MAXN];
int main()
{
//	freopen("model2.in","r",stdin);
	cin>>T;
	For(kcase,T)
	{
		int n,k;
		scanf("%d%d",&n,&k);
		For(i,n) scanf("%d",&f[i]);
		For(i,n) scanf("%d",&g[i]);
		For(i,n) f[i]*=g[i];

		double l=0,r=100;
		while((r-l)>eps)
		{
			double m=(r+l)/2,ans=0;
			For(i,n) e[i]=(double)f[i]-m*(double)g[i];
			sort(e+1,e+1+n);

			ForkD(i,k+1,n)
			ans+=e[i];

			ForD(i,k)
			{
				if (e[i]>0) ans+=e[i];
				else break;
			}

			if (ans>=0) l=m;
			else r=m;
		}

		printf("Case #%d:\n%.3lf\n",kcase,l);
	}

	return 0;
}

Chang'an(Hack-01分数规划)

时间: 2024-10-29 19:10:04

Chang'an(Hack-01分数规划)的相关文章

01分数规划模板

/* 01分数规划模板(Dinkelbach) 01分数规划就是把 sum(a)/sum(b)转换成 f(x)=sum(a)-ans*sum(b); 当f(x)取到0时,ans取到了最大(小)值 poj 2976 两个长度为n的数组a,b 可以除去m个,怎样选择才能使剩下的 sum(a)/sum(b)的百分数最大 */ int n,m; struct Node{ int a,b; double v; ///用于排序筛选较大的值(题目要求极大值 bool operator<(const Node&am

poj3621 Sightseeing Cows --- 01分数规划

典型的求最优比例环问题 参考资料: http://blog.csdn.net/hhaile/article/details/8883652 此题中,给出每个点和每条边的权值,求一个环使 ans=∑点权/∑边权 最大. 因为题目要求一个环,而且必然是首尾相接的一个我们理解的纯粹的环,不可能是其他样子的环, 所以我们可以把一条边和指向的点看做整体处理. 上面方程可以化为:ans×e[i]-p[i]=0 以它为边权二分答案,spfa求负环,有负环则该ans可行,增大下界. 若一直不可行,则无解. #i

【Earthquake, 2001 Open 】 0-1 分数规划

71  奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛们很有经济头脑,如果无利可图,它们是不会干的.约翰和奶牛达成了协议,约翰向奶牛支付 F 元,奶牛负责修路,但不必修复所有道路,只要确保所有牧场连通即可.可供奶牛选择修复的道路有 M 条,第 i 条道路连接第 Ui 个牧场和第 Vi 个牧场,修复需要 Ti 分钟,支出成本为 Ci.保证连通所有牧场的道

编程之美第一篇 01分数规划

01分数规划 01分数规划问题其实就是解决单价之类的问题,假设给你n个物品,让你找出选k个物品的最大单价:例如南阳oj:Yougth的最大化:解决这类问题可以用二分查找,这类问题跟二分极大化最小值,极小化最大值有一些相似的地方,均是从结果出发,来进行二分查找:例如上面南阳那道题,可以转化一下: 由于v/w=单价:所以v=w*单价:即v-w*单价=0:有了这个关系,我们马上可以想到二分来查找这个值: 那么我们可以定义一个count数组来记录v-w*单价的值:由于选k个只需要把count从大到小排下

zoj 2676 Network Wars(最小割,01分数规划)

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2676 大致题意:给出一个带权无向图,每条边有一个边权wi,求将S和T分开的一个割边集C,使得该割边集的平均边权最小,即最小化∑wi / |C| . 详见amber关于最小割模型的论文 思路:amber论文中详细讲解了如何转化成函数及建图,值得注意的是当边被重新赋权后,对于wi < 0 的边权,该边必然在最小割中,不必再建边,直接加入最大流中即可,因为求最小割时边权都为正值

zoj2676--Network Wars(0-1分数规划+最小割)

zoj2676:题目链接 题目大意:有一个n个点的网络,其中有m条光缆(所有的点都被连接,任意两个点之间最多有一条,不存在连接自身的),每条光缆有一定的价值,网络中1为起点,n为终点,现在要求找出一些光缆能分割开1到n,使它们不能相互通信,并且要求花费的和除以光缆数的值最小.输出选择的光缆的编号. 从问题中可以看出一定是0-1分数规划的题目,假设选出光缆的集合M,M为原图的一个割,光缆si∈M,价值为ci,数量k = 1 ,可以推出g(x) = min( ∑c - x*∑k ),因为si是割中的

[POJ 2728]Desert King(0-1分数规划/最优比率生成树)

Description David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be

BZOJ1758: [Wc2010]重建计划(01分数规划+点分治+单调队列)

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, 对于一棵子树维护点的dep,dis,并用队列q存下来.令mx[i]表示当前dep为i的最大权值,维护一个单调队列dq,维护当前符合条件的mx,当我们从q的队尾向前扫时,它的dep是递减的,利用这个性质维护单调队列,最后更新一遍mx.具体看代码吧TAT 代码: #include<cstring>#

01分数规划(转)

01分数规划 分类: DP&&记忆化搜索2013-05-04 14:47 4193人阅读 评论(1) 收藏 举报 [关键字] 0/1分数规划.最优比率生成树.最优比率环 [背景] 根据楼教主的回忆录,他曾经在某一场比赛中秒掉了一道最优比率生成树问题,导致很多人跟风失败,最终悲剧.可见最优比率生成树是多么凶残的东西,但是这个东西只要好好研究半天就可以掌握,相信你在看了我写的这篇总结之后可以像楼教主一般秒掉这类问题. 因为网上对于01分数规划问题的详细资料并不是太多,所以我就结合自己的一些理解

01分数规划入门

01分数规划是这样的一类问题,有一堆物品,每一个物品有一个收益ai,一个代价bi,我们要求一个方案使选择的最大. 首先我们来一道例题吧,01分数规划的大体方法都是一样的. 例1 Dropping Tests poj2976 给出n个物品,每个物品有两个属性a和b,选择n-k个元素,询问的最大值. 1<=n<=1000,0<=k<n,0<=ai<=bi<=1000000000. 首先这题显然是兹磁二分的,而就等价于. 所以我们发现二分完把ai-x*bi排序后把最大的