Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6130 Accepted Submission(s): 2234
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum
start position, if still more than one , output the minimum length of them.
Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
Sample Output
7 1 3 7 1 3 7 6 2 -1 1 1
Author
shǎ崽@HDU
Source
HDOJ Monthly Contest – 2010.06.05
Recommend
lcy | We have carefully selected several similar problems for you: 3423 3417 3418 3419 3421
先把环变成链,然后就是在1 - 2 * n - 1之间求
求出前缀和,那么ans = max(sum[i] - sum[j - 1])而且 i - j + 1 <=k
用一个单调队列来维护sum[j - 1],边维护边记录答案
PS:这题应该还能用线段树,RMQ等方法解决
#include <map> #include <set> #include <list> #include <queue> #include <stack> #include <vector> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 200010; int dp[N], arr[N]; int in_que[N], sum[N]; int main() { int n, t, k; scanf("%d", &t); while (t--) { scanf("%d%d", &n, &k); sum[0] = 0; for (int i = 1; i <= n; ++i) { scanf("%d", &arr[i]); sum[i] = sum[i - 1] + arr[i]; } for (int i = n + 1; i < 2 * n; ++i) { sum[i] = sum[i - 1] + arr[i - n]; } int front = 0, rear = 0; int s, e, maxs = -0x3f3f3f3f; for (int i = 1; i <= k; ++i) { while (front < rear && sum[in_que[rear - 1]] >= sum[i - 1]) { rear--; } in_que[rear++] = i - 1; // printf("%d %d\n", sum[in_que[front]], sum[i]); if (maxs < sum[i] - sum[in_que[front]]) { maxs = sum[i] - sum[in_que[front]]; s = in_que[front] + 1; e = i; } else if (maxs == sum[i] - sum[in_que[front]] && in_que[front] + 1 < s) { s = in_que[front] + 1; } else if (maxs == sum[i] - sum[in_que[front]] && in_que[front] + 1 == s && e > i) { e = i; } // printf("%d\n", in_que[front]); } for (int i = k + 1; i < 2 * n; ++i) { while (front < rear && sum[in_que[rear - 1]] >= sum[i - 1]) { rear--; } in_que[rear++] = i - 1; if (in_que[front] < i - k) { front++; } if (maxs < sum[i] - sum[in_que[front]]) { maxs = sum[i] - sum[in_que[front]]; s = in_que[front] + 1; e = i; } else if (maxs == sum[i] - sum[in_que[front]] && in_que[front] + 1 < s) { s = in_que[front] + 1; } else if (maxs == sum[i] - sum[in_que[front]] && in_que[front] + 1 == s && e > i) { e = i; } } if (s > n) { s -= n; } if (e > n) { e -= n; } printf("%d %d %d\n", maxs, s, e); } return 0; }