图的存储结构(邻接矩阵)

图的存储结构(邻接矩阵)

让编程改变世界

Change the world by program


图的存储结构

图的存储结构相比较线性表与树来说就复杂很多。

我们回顾下,对于线性表来说,是一对一的关系,所以用数组或者链表均可简单存放。树结构是一对多的关系,所以我们要将数组和链表的特性结合在一起才能更好的存放。

那么我们的图,是多对多的情况,另外图上的任何一个顶点都可以被看作是第一个顶点,任一顶点的邻接点之间也不存在次序关系。

我们仔细观察以下几张图,然后深刻领悟一下:

因为任意两个顶点之间都可能存在联系,因此无法以数据元素在内存中的物理位置来表示元素之间的关系(内存物理位置是线性的,图的元素关系是平面的)。

如果用多重链表来描述倒是可以做到,但在几节课前的树章节我们已经讨论过,纯粹用多重链表导致的浪费是无法想像的(如果各个顶点的度数相差太大,就会造成巨大的浪费)。

所幸,前辈们已经帮想好了出路,我们接下来会谈图的五种不同的存储结构,大家做好准备哦~

邻接矩阵(无向图)

考虑到图是由顶点和边或弧两部分组成,合在一起比较困难,那就很自然地考虑到分为两个结构来分别存储。

顶点因为不区分大小、主次,所以用一个一维数组来存储是狠不错的选择。

而边或弧由于是顶点与顶点之间的关系,一维数组肯定就搞不定了,那我们不妨考虑用一个二维数组来存储。

于是我们的邻接矩阵方案就诞生了!

图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称为邻接矩阵)存储图中的边或弧的信息。

我们可以设置两个数组,顶点数组为vertex[4]={V0,V1,V2,V3},边数组arc[4][4]为对称矩阵(0表示不存在顶点间的边,1表示顶点间存在边)。

对称矩阵:所谓对称矩阵就是n阶矩阵的元满足a[i][j]=a[j][i](0<=i,j<=n)。即从矩阵的左上角到右下角的主对角线为轴,右上角的元与左下角相对应的元全都是相等的。

有了这个二维数组组成的对称矩阵,我们就可以很容易地知道图中的信息:

  1. 要判定任意两顶点是否有边无边就非常容易了;
  2. 要知道某个顶点的度,其实就是这个顶点Vi在邻接矩阵中第i行(或第i列)的元素之和;
  3. 求顶点Vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点咯。

邻接矩阵(有向图)

无向图的边构成了一个对称矩阵,貌似浪费了一半的空间,那如果是有向图来存放,会不会把资源都利用得很好呢?

可见顶点数组vertex[4]={V0,V1,V2,V3},弧数组arc[4][4]也是一个矩阵,但因为是有向图,所以这个矩阵并不对称,例如由V1到V0有弧,得到arc[1][0]=1,而V0到V1没有弧,因此arc[0][1]=0。

另外有向图是有讲究的,要考虑入度和出度,顶点V1的入度为1,正好是第V1列的各数之和,顶点V1的出度为2,正好是第V1行的各数之和。

邻接矩阵(网)

在图的术语中,我们提到了网这个概念,事实上也就是每条边上带有权的图就叫网。

时间: 2024-10-11 13:35:50

图的存储结构(邻接矩阵)的相关文章

java 数据结构 图中使用的一些常用算法 图的存储结构 邻接矩阵:图的邻接矩阵存储方式是用两个数组来标示图。一个一位数组存储图顶点的信息,一个二维数组(称为邻接矩阵)存储图中边或者弧的信息。 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 实例如下,左图是一个无向图。右图是邻接矩阵表示:

以下内容主要来自大话数据结构之中,部分内容参考互联网中其他前辈的博客. 图的定义 图是由顶点的有穷非空集合和顶点之间边的集合组成,通过表示为G(V,E),其中,G标示一个图,V是图G中顶点的集合,E是图G中边的集合. 无边图:若顶点Vi到Vj之间的边没有方向,则称这条边为无项边(Edge),用序偶对(Vi,Vj)标示. 对于下图无向图G1来说,G1=(V1, {E1}),其中顶点集合V1={A,B,C,D}:边集合E1={(A,B),(B,C),(C,D),(D,A),(A,C)}: 有向图:若

数据结构之图(一)图的存储结构

图的存储结构相对于线性表和树来说更为复杂,因为图中的顶点具有相对概念,没有固定的位置.那我们怎么存储图的数据结构呢?我们知道,图是由(V, E)来表示的,对于无向图来说,其中 V = (v0, v1, ... , vn),E = { (vi,vj) (0 <=  i, j <=  n且i 不等于j)},对于有向图,E = { < vi,vj > (0 <=  i, j <=  n且i 不等于j)}.V是顶点的集合,E是边的集合.所以我们只要把顶点和边的集合储存起来,那么

数据结构 - 图的存储结构

图的抽象数据类型定义 图是一种数据结构,加上一组基本操作就构成了图的抽象数据类型. 图的抽象数据类型定义如下: ADT Graph{ 数据对象V:具有相同特性的数据元素的集合,称为顶点集. 数据关系R:R={VR} VR={<v,w>|<v,w>| v,w?V∧p(v,w) ,<v,w>表示 从v到w的弧,P(v,w)定义了弧<v,w>的信息 } 基本操作P: Create_Graph() : 图的创建操作. 初始条件:无. 操作结果:生成一个没有顶点的空图

《大话数据结构》笔记(7-2)--图:存储结构

第七章  图 图的存储结构 图不能用简单的顺序存储结构来表示. 而多重链表的方式,即以一个数据域和多个指针域组成的结点表示图中的一个顶点,尽管可以实现图结构,但是会有问题,比如若各个顶点的度数相差很大,按度数最大的顶点设计结点结构会造成很多存储单元的浪费,而若按每个顶点自己的度数设计不同的顶点结构,又带来操作的不便. 对于图来说,如何对它实现物理存储是个难题.图有以下五种不同的存储结构. 邻接矩阵 图的邻接矩阵(Adjacency Matrix)存储方式使用过两个数组来表示图.一个一维数组存储图

(转)数据结构之图(存储结构、遍历)

一.图的存储结构 1.1 邻接矩阵 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 看一个实例,下图左就是一个无向图. 从上面可以看出,无向图的边数组是一个对称矩阵.所谓对称矩阵就是n阶矩阵的元满足aij = aji.即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的. 从这个矩阵中,很容易知道图中的信息. (1)要判断任意两顶点是否有

图的存储结构及遍历

一.图的存储结构 1.1 邻接矩阵 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 看一个实例,下图左就是一个无向图. 从上面可以看出,无向图的边数组是一个对称矩阵.所谓对称矩阵就是n阶矩阵的元满足aij = aji.即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的. 从这个矩阵中,很容易知道图中的信息. (1)要判断任意两顶点是否有

数据结构(五)图---图的存储结构5种

一:图的抽象数据类型 ADT 图(Graph) Data 顶点的有穷非空集合和边的集合 Operation CreateGraph(*G,V,VR):按照顶点集V和边弧集VR的定义构造图G DestroyGraph(*G):图G存在则销毁 LocateVex(G,u):若图G中存在顶点u,则返回图中位置 GetVex(G,v):返回图中顶点v的值 PutVex(G,v,value):将图G中顶点v赋值给value FirstAdjVex(G,*v):返回顶点v的一个邻接顶点,若顶点在G中无邻接顶

数据--第41棵 - 图的存储结构

第41棵 - 图的存储结构 1. 邻接矩阵法 用一维数组存储顶点--描述顶点相关的数据. 用二维数组存储边--描述顶点的边. 设图A = (V,E)是一个有n个顶点的图,图的邻接矩阵为Edge[n][n],则:Edge[i][j] = W,W>0,i和j连接:Edge[i][j] = 0,i == j 或者i和j不链接. 注:W为权值,当需要权值时,取W为1表示结点间连接. 无向图的邻接矩阵是对称的. 有向图的邻接矩阵可能是不对称的. 2. 邻接矩阵法的头结点 记录定点的个数. 记录与顶点相关的

【algo&amp;ds】5.图及其存储结构、遍历

1.什么是图 图表示"多对多"的关系 包含 一组顶点:通常用 V(Vertex)表示顶点集合 一组边:通常用 E(Edge)表示边的集合 边是顶点对:(v,w)∈ E,其中 v,w ∈ V ,v-w 有向边 <v,w> 表示从 v 指向 w 的边(单行线) v→w 不考虑重边和自回路 常见术语 无向图:图中所有的边无所谓方向 有向图:图中的边可能是双向,也可能是单向的,方向是很重要的 权值:给图中每条边赋予的值,可能有各种各样的现实意义 网络:带权值的图 邻接点:有边直接相