“大端”和“小端”可以追溯到1726年的Jonathan Swift的《格列佛游记》,其中一篇讲到有两个国家因为吃鸡蛋究竟是先打破较大的一端还是先打破较小的一端而争执不休,甚至爆发了战争。1981年10月,Danny Cohen的文章《论圣战以及对和平的祈祷》(On holy wars and a plea for peace)将这一对词语引入了计算机界(《程序设计实践》第9章)。这么看来,所谓大端和小端,也就是big-endian和little-endian,其实是从描述鸡蛋的部位而引申到计算机地址的描述,也可以说,是从一个俚语衍化来的计算机术语。在计算机里,对于地址的描述,很少用“大”和“小”来形容;对应地,用的更多的是“高”和“低”;很不幸地,这对术语直接按字面翻译过来就成了“大端”和“小端”,让人产生迷惑也不是很奇怪的事了。
如果将一个32位的整数0x12345678存放到一个整型变量(int)中,这个整型变量采用大端或者小端模式在内存中的存储由下表所示。为简单起见,此处使用OP0表示一个32位数据的最高字节MSB(Most Significant Byte),使用OP3表示一个32位数据最低字节LSB(LeastSignificant Byte)。
地址偏移 |
大端模式 |
小端模式 |
0x00 |
12(OP0) |
78(OP3) |
0x01 |
34(OP1) |
56(OP2) |
0x02 |
56(OP2) |
34(OP1) |
0x03 |
78(OP3) |
12(OP0) |
如果将一个16位的整数0x1234存放到一个短整型变量(short)中。这个短整型变量在内存中的存储在大小端模式由下表所示。
地址偏移 |
大端模式 |
小端模式 |
0x00 |
12(OP0) |
34(OP1) |
0x01 |
34(OP1) |
12(OP0) |
由上表所知,采用大小模式对数据进行存放的主要区别在于在存放的字节顺序,大端方式将高位存放在低地址,小端方式将高位存放在高地址。采用大端方式进行数据存放符合人类的正常思维,而采用小端方式进行数据存放利于计算机处理。到目前为止,采用大端或者小端进行数据存放,其孰优孰劣也没有定论。
有的处理器系统采用了小端方式进行数据存放,如Intel的奔腾。有的处理器系统采用了大端方式进行数据存放,如IBM半导体和Freescale的PowerPC处理器。不仅对于处理器,一些外设的设计中也存在着使用大端或者小端进行数据存放的选择。
因此在一个处理器系统中,有可能存在大端和小端模式同时存在的现象。这一现象为系统的软硬件设计带来了不小的麻烦,这要求系统设计工程师,必须深入理解大端和小端模式的差别。大端与小端模式的差别体现在一个处理器的寄存器,指令集,系统总线等各个层次中。
在裘宗燕翻译的《程序设计实践》里,这对术语并没有翻译为“大端”和小端,而是“高尾端”和“低尾端”,这就好理解了:如果把一个数看成一个字符串,比如11223344看成"11223344",末尾是个‘\0‘,‘11‘到‘44‘个占用一个存储单元,那么它的尾端很显然是44,前面的高还是低就表示尾端放在高地址还是低地址,它在内存中的放法非常直观,
“高/低尾端”比“大/小端”更不容易让人迷惑。但是根据个人经验,在市面上的书籍、网络上的各种资料中,很遗憾,前者已经很少见了,多见的是后者。好在这两对形容词中,恰好“高”和“大”对应,“低”和“小”对应;既然高尾端对应的是大端,低尾端对应的是小端,那么当你再见到大端和小端这一对术语,就可以在脑中把它们转化成高尾端和低尾端,这时凭着之前的理解,甚至不用回忆,想着高低的字面含义就能回想起它们的含义。但是很奇怪的是,同样是裘宗燕翻译的《编程原本》(Elements of Programming),却把big-endian翻译成大尾格式(第一章)。
理解之后,总结一下,记忆的方法是:
(数据看成字符串)大端——高尾端,小端——低尾端稍一思索什么是“高”、什么是"低","尾端"又是什么,问题迎刃而解,再不用担心被“大端”和“小端”迷惑。用这种方式,是时候放弃原先的死记硬背和容易把自己绕进去而发生迷惑的理解了。
如何判断系统中的CPU 是Little endian 还是Big endian 模式?
分析:
作 为一个计算机相关专业的人,我们应该在计算机组成中都学习过什么叫Little endian 和Big endian。Little endian 和Big endian 是CPU 存放数据的两种不同顺序。对于整型、长整型等数据类型,Big endian 认为第一个字节是最高位字节(按照从低地址到高地址的顺序存放数据的高位字节到低位字节);而Little endian 则相反,它认为第一个字节是最低位字节(按照从低地址到高地址的顺序存放数据的低位字节到高位字节)。
例如,假设从内存地址0x0000 开始有以下数据:
0x12 0x34 0xab 0xcd
如 果我们去读取一个地址为0x0000 的四个字节变量,若字节序为big-endian,则读出结果为0x1234abcd;若字节序位little-endian,则读出结果为 0xcdab3412。如果我们将0x1234abcd 写入到以0x0000 开始的内存中,则Little endian 和Big endian 模式的存放结果如下:
地址 0x0000 0x0001 0x0002 0x0003
big-endian 0x12 0x34 0xab 0xcd
little-endian 0xcd 0xab0x34 0x12
一般来说,x86 系列CPU 都是little-endian 的字节序,PowerPC 通常是Big endian,还有的CPU 能通过跳线来设置CPU 工作于Little endian 还是Big endian 模式。
解答:
显然,解答这个问题的方法只能是将一个字节(CHAR/BYTE 类型)的数据和一个整型数据存放于同样的内存
开始地址,通过读取整型数据,分析CHAR/BYTE 数据在整型数据的高位还是低位来判断CPU 工作于Little
endian 还是Big endian 模式。得出如下的答案:
typedef unsigned char BYTE;
int main(int argc, char* argv[])
{
unsigned int num,*p;
p = #
num = 0;
*(BYTE *)p = 0xff;
if(num == 0xff)
{
printf("little\n");
}
else //num == 0xff000000
{
printf("big\n");
}
return 0;
}
除了上述方法(通过指针类型强制转换并对整型数据首字节赋值,判断该赋值赋给了高位还是低位)外,还有没有更好的办法呢?我们知道,union 的成员本身就被存放在相同的内存空间(共享内存,正是union 发挥作用、做贡献的去处),因此,我们可以将一个CHAR/BYTE 数据和一个整型数据同时作为一个union 的成员,得出如下答案:
int checkCPU()
{
{
union w
{
int a;
char b;
} c;
c.a=1;
return (c.b==1);
}
}
实现同样的功能,我们来看看Linux 操作系统中相关的源代码是怎么做的:
static union { char c[4]; unsigned long mylong; } endian_test = {{ ‘l‘, ‘?‘,‘?‘, ‘b‘ } };
#define ENDIANNESS ((char)endian_test.mylong)
Linux 的内核作者们仅仅用一个union 变量和一个简单的宏定义就实现了一大段代码同样的功能!由以上一段代码我们可以深刻领会到Linux 源代码的精妙之处!(如果ENDIANNESS=’l’表示系统为little endian,
为’b’表示big endian )