题意:输入两个整数n和m,求最大的整数k使得m^k是n!的约数。
思路:m^k等于m的所有质因子的k次方的和,所以只要找到m中的质因子在n!中所能得到的最小的次方,就是k的值。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int n, m; int main() { int cas; int t = 1; scanf("%d", &cas); while (cas--) { scanf("%d%d", &m, &n); printf("Case %d:\n", t++); int k = 2; int ans = INF; while (m != 1) { int cnt = 0; while (m % k == 0) { m /= k; cnt++; } if (cnt) { int a = 0; for (int i = 0; i <= n; i += k) { if (i % k == 0 && i != 0) { int temp = i; while (temp % k == 0) { a++; temp /= k; } } } a = a / cnt; ans = min(ans, a); } k++; } if (ans) printf("%d\n", ans); else printf("Impossible to divide\n"); } return 0; }
时间: 2024-10-06 12:35:00