经典算法问题 - 最大连续子数列和

文章来自:http://conw.net/archives/9/

(不是抄袭,那是我自己的博客,源地址查看代码有高亮)

最大连续子数列和一道很经典的算法问题,给定一个数列,其中可能有正数也可能有负数,我们的任务是找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大。我们一起用多种方式,逐步优化解决这个问题。

为了更清晰的理解问题,首先我们先看一组数据:
8
-2 6 -1 5 4 -7 2 3
第一行的8是说序列的长度是8,然后第二行有8个数字,即待计算的序列。
对于这个序列,我们的答案应该是14,所选的数列是从第2个数到第5个数,这4个数的和是所有子数列中最大的。

最暴力的做法,复杂度O(N^3)

暴力求解也是容易理解的做法,简单来说,我们只要用两层循环枚举起点和终点,这样就尝试了所有的子序列,然后计算每个子序列的和,然后找到其中最大的即可,C语言代码如下:

#include <stdio.h>

//N是数组长度,num是待计算的数组,放在全局区是因为可以开很大的数组
int N, num[1024];

int main()
{
    //输入数据
    scanf("%d", &N);
    for(int i = 1; i <= N; i++)
        scanf("%d", &num[i]);

    int ans = num[1]; //ans保存最大子序列和,初始化为num[1]能保证最终结果正确
    //i和j分别是枚举的子序列的起点和终点,k所在循环计算每个子序列的和
    for(int i = 1; i <= N; i++) {
        for(int j = i; j <= N; j++) {
            int s = 0;
            for(int k = i; k <= j; k++) {
                s += num[k];
            }
            if(s > ans) ans = s;
        }
    }
    printf("%d\n", ans);

    return 0;
}

这个算法的时间复杂度是O(N^3),复杂度的计算方法可参考《算法导论》第一章,如果我们的计算机可以每秒计算一亿次的话,这个算法在一秒内只能计算出500左右长度序列的答案。

一个简单的优化

如果你读懂了刚才的程序,我们可以来看一个简单的优化。
如果我们有这样一个数组sum,sum[i]表示第1个到第i个数的和。那么我们如何快速计算第i个到第j个这个序列的和?对,只要用sum[j] - sum[i-1]就可以了!这样的话,我们就可以省掉最内层的循环,让我们的程序效率更高!C语言代码如下:

#include <stdio.h>

//N是数组长度,num是待计算的数组,sum是数组前缀和,放在全局区是因为可以开很大的数组
int N, num[16384], sum[16384];

int main()
{
    //输入数据
    scanf("%d", &N);
    for(int i = 1; i <= N; i++)
        scanf("%d", &num[i]);

    //计算数组前缀和
    sum[0] = 0;
    for(int i = 1; i <= N; i++) {
        sum[i] = num[i] + sum[i - 1];
    }

    int ans = num[1]; //ans保存最大子序列和,初始化为num[1]能保证最终结果正确
    //i和j分别是枚举的子序列的起点和终点
    for(int i = 1; i <= N; i++) {
        for(int j = i; j <= N; j++) {
            int s = sum[j] - sum[i - 1];
            if(s > ans) ans = s;
        }
    }
    printf("%d\n", ans);

    return 0;
}

这个算法的时间复杂度是O(N^2)。如果我们的计算机可以每秒计算一亿次的话,这个算法在一秒内能计算出10000左右长度序列的答案,比之前的程序已经有了很大的提升!此外,我们在这个程序中创建了一个sum数组,事实上,这也是不必要的,我们我就也可以把数组前缀和直接计算在num数组中,这样可以节约一些内存。

换个思路,继续优化

你应该听说过分治法,正是:分而治之。我们有一个很复杂的大问题,很难直接解决它,但是我们发现可以把问题划分成子问题,如果子问题规模还是太大,并且它还可以继续划分,那就继续划分下去。直到这些子问题的规模已经很容易解决了,那么就把所有的子问题都解决,最后把所有的子问题合并,我们就得到复杂大问题的答案了。可能说起来简单,但是仍不知道怎么做,接下来分析这个问题:
首先,我们可以把整个序列平均分成左右两部分,答案则会在以下三种情况中:
1、所求序列完全包含在左半部分的序列中。
2、所求序列完全包含在右半部分的序列中。
3、所求序列刚好横跨分割点,即左右序列各占一部分。
前两种情况和大问题一样,只是规模小了些,如果三个子问题都能解决,那么答案就是三个结果的最大值。我们主要研究一下第三种情况如何解决:

我们只要计算出:以分割点为起点向左的最大连续序列和、以分割点为起点向右的最大连续序列和,这两个结果的和就是第三种情况的答案。因为已知起点,所以这两个结果都能在O(N)的时间复杂度能算出来。
递归不断减小问题的规模,直到序列长度为1的时候,那答案就是序列中那个数字。
综上所述,C语言代码如下,递归实现:

#include <stdio.h>

//N是数组长度,num是待计算的数组,放在全局区是因为可以开很大的数组
int N, num[16777216];

int solve(int left, int right)
{
    //序列长度为1时
    if(left == right)
        return num[left];

    //划分为两个规模更小的问题
    int mid = left + right >> 1;
    int lans = solve(left, mid);
    int rans = solve(mid + 1, right);

    //横跨分割点的情况
    int sum = 0, lmax = num[mid], rmax = num[mid + 1];
    for(int i = mid; i >= left; i--) {
        sum += num[i];
        if(sum > lmax) lmax = sum;
    }
    sum = 0;
    for(int i = mid + 1; i <= right; i++) {
        sum += num[i];
        if(sum > rmax) rmax = sum;
    }

    //答案是三种情况的最大值
    int ans = lmax + rmax;
    if(lans > ans) ans = lans;
    if(rans > ans) ans = rans;

    return ans;
}

int main()
{
    //输入数据
    scanf("%d", &N);
    for(int i = 1; i <= N; i++)
        scanf("%d", &num[i]);

    printf("%d\n", solve(1, N));

    return 0;
}

不难看出,这个算法的时间复杂度是O(N*logN)的(想想归并排序)。它可以在一秒内处理百万级别的数据,甚至千万级别也不会显得很慢!这正是算法的优美之处。对递归不太熟悉的话可能会对这个算法有所疑惑,那可就要仔细琢磨一下了。

动态规划的魅力,O(N)解决!

很多动态规划算法非常像数学中的递推。我们如果能找到一个合适的递推公式,就能很容易的解决问题。
我们用dp[n]表示以第n个数结尾的最大连续子序列的和,于是存在以下递推公式:
dp[n] = max(0, dp[n-1]) + num[n]
仔细思考后不难发现这个递推公式是正确的,则整个问题的答案是max(dp[m]) | m∈[1, N]。C语言代码如下:

#include <stdio.h>

//N是数组长度,num是待计算的数组,放在全局区是因为可以开很大的数组
int N, num[134217728];

int main()
{
    //输入数据
    scanf("%d", &N);
    for(int i = 1; i <= N; i++)
        scanf("%d", &num[i]);

    num[0] = 0;
    int ans = num[1];
    for(int i = 1; i <= N; i++) {
        if(num[i - 1] > 0) num[i] += num[i - 1];
        else num[i] += 0;
        if(num[i] > ans) ans = num[i];
    }

    printf("%d\n", ans);

    return 0;
}

这里我们没有创建dp数组,根据递归公式的依赖关系,单独一个num数组就足以解决问题,创建一个一亿长度的数组要占用几百MB的内存!这个算法的时间复杂度是O(N)的,所以它计算一亿长度的序列也不在话下!不过你如果真的用一个这么大规模的数据来测试这个程序会很慢,因为大量的时间都耗费在程序读取数据上了!

另辟蹊径,又一个O(N)的算法

考虑我们之前O(N^2)的算法,即一个简单的优化一节,我们还有没有办法优化这个算法呢?答案是肯定的!
我们已知一个sum数组,sum[i]表示第1个数到第i个数的和,于是sum[j] - sum[i-1]表示第i个数到第j个数的和。
那么,以第n个数为结尾的最大子序列和有什么特点?假设这个子序列的起点是m,于是结果为sum[n] - sum[m-1]。并且,sum[m]必然是sum[1],sum[2]...sum[n-1]中的最小值!这样,我们如果在维护计算sum数组的时候,同时维护之前的最小值, 那么答案也就出来了!为了节省内存,我们还是只用一个num数组。C语言代码如下:

#include <stdio.h>

//N是数组长度,num是待计算的数组,放在全局区是因为可以开很大的数组
int N, num[134217728];

int main()
{
    //输入数据
    scanf("%d", &N);
    for(int i = 1; i <= N; i++)
        scanf("%d", &num[i]);

    //计算数组前缀和,并在此过程中得到答案
    num[0] = 0;
    int ans = num[1], lmin = 0;
    for(int i = 1; i <= N; i++) {
        num[i] += num[i - 1];
        if(num[i] - lmin > ans)
            ans = num[i] - lmin;
        if(num[i] < lmin)
            lmin = num[i];
    }

    printf("%d\n", ans);

    return 0;
}

看起来我们已经把最大连续子序列和的问题解决得很完美了,时间复杂度和空间复杂度都是O(N),不过,我们确实还可以继续!

大道至简,最大连续子序列和问题的完美解决

很显然,解决此问题的算法的时间复杂度不可能低于O(N),因为我们至少要算出整个序列的和,不过如果空间复杂度也达到了O(N),就有点说不过去了,让我们把num数组也去掉吧!

#include <stdio.h>

int main()
{
    int N, n, s, ans, m = 0;

    scanf("%d%d", &N, &n);
    ans = s = n;
    for(int i = 1; i < N; i++) {
        if(s < m) m = s;
        scanf("%d", &n);
        s += n;
        if(s - m > ans)
            ans = s - m;
    }
    printf("%d\n", ans);

    return 0;
}

这个程序的原理另辟蹊径,又一个O(N)的算法中介绍的一样。它的时间复杂度是O(N),空间复杂度是O(1),这达到了理论下限!唯一比较麻烦的是ans的初始化值,不能直接初始化为0,因为数列可能全为负数!

至此,最大连续子序列和的问题已经被我们完美解决!然而以上介绍的算法都只是直接求出问题的结果,而不能求出具体是哪一个子序列,其实搞定这个问题并不复杂,具体怎么做留待读者思考吧!

时间: 2024-12-12 05:01:17

经典算法问题 - 最大连续子数列和的相关文章

算法设计--求连续子向量的最大和问题--论想法思路的重要性

向量[31,-41,59,26,-53,58,97,-93,-23,84] 算法一:直接求解,简单粗暴,没有什么想法可言,复杂度是O(N3) // 方法一,接近O(n3) int maxsofar1=0; int count=0; for (int i = 0; i < 10; ++i) { for (int j = 0; j < 10; ++j) { int sum=0; for (int k = i; k < j; ++k) { sum+=vec[k]; count++; } max

最大连续子数列和

参考:http://conw.net/archives/9/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io 留坑.

算法 | 最大连续子数组

最大连续子数组 给定一个数组A[0,1,-,n-1],求A的连续子数组,使得该子数组的和最大. 例如: 数组:1,-2,3,10,-4,7,2,-5 最大字数组:3,10,-4,7,2 此问题有以下四种方法 1.  暴力法 2.  分治法 3.  分析法 4.  动态规划法 暴力法 直接求解A[I,-j]的值,其中,0<=i<n,i<=j<n,因为i,i+1,-j的最大长度为n,所以时间复杂度O(n3). //暴力法 int MaxSubArray(int *a, int n) {

算法学习笔记:最大连续子数组

寻找最大连续子数组 这两天看了看数据结构与算法,对其中一个问题颇感兴趣,所以在这里写一下.问题:寻找最大连续子数组. 问题:在一个有正有负的数组中,寻找一个连续的.和最大的子数组.这个数组类似于下面的数组,否则这个问题没有意义(如果全是正数的话,所有数组元素的和一定是最大的,同样全为负数也没有意义.). int a={1,-2,3,45,-78,34,-2,6}; 解法一:暴力求解. 那么如何来解决这个问题呢?这个思路要起来并不难,绝大多数人会想到这样的办法:遍历该数组的所有子数组,找到和最大的

2.分治算法研究-搜索数组中的最大连续子集和 2014-3-11 11:37 阅读(16)

//分治算法研究var cc=consolefunction find_max_crossing_subarray(A,low,mid,high){    var max_left=mid,max_right=mid    var left_sum=0    var sum=0    for(var i=mid;i>=low;i--){        sum=sum+A[i]        if(sum>left_sum){            left_sum=sum           

白话经典算法系列之九 从归并排序到数列的逆序数对(微软笔试题)

首先来看看原题 微软2010年笔试题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序数对.一个排列中逆序的总数就称为这个排列的逆序数.如{2,4,3,1}中,2和1,4和3,4和1,3和1是逆序数对,因此整个数组的逆序数对个数为4,现在给定一数组,要求统计出该数组的逆序数对个数. 计算数列的逆序数对个数最简单的方便就最从前向后依次统计每个数字与它后面的数字是否能组成逆序数对.代码如下: #include <stdio.h> int main()

数据挖掘十大经典算法

一. C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2) 在树构造过程中进行剪枝: 3) 能够完成对连续属性的离散化处理: 4) 能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导

动态展示十大经典算法

算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序n个项目要Ο(nlogn)次比较.在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见.事实上,快速排序通常明显比其他Ο(nlogn)算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来. 快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists). 算法步骤: 1.从数列中挑出一个元素,称为“基准”(pivot),

白话经典算法系列之七 堆与堆排序

堆排序与高速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先解说下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是全然二叉树或者是近似全然二叉树. 二叉堆满足二个特性: 1.父结点的键值总是大于或等于(小于或等于)不论什么一个子节点的键值. 2.每一个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆). 当父结点的键值总是大于或等于不论什么一个子节点的键值时为最大堆.当父结点的键值总是小于或等于不论什么一个子节点的键值时为最小堆.下图展示一个最小堆